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Dankwoord

De zon schijnt. Dat gebeurt wel eens in de herfst. Ik zit op de trein. Zoals steeds zit

deze vol starende mensen, moe van de werkdag en storend stil. Maar gelukkig schijnt

de zon. Ik droom even weg, denkend aan vanalles en nog wat, maar kom onherroe-

pelijk terecht bij dit doctoraat. Gelukkig, want ik ben van plan om hier, ergens tussen

Brussel en Gent, de meest gelezen pagina’s van dit hele werk te produceren. Ik moet

hier wel bij vermelden dat het vervolg zo’n tweehonderd maal meer ‘werk per pagina’

heeft gevraagd dan dit dankwoord. Mocht de Dirichlet-Neumann operator u dus onge-

meen interesseren, of u kan de slaap niet vatten, raad ik u alvast een hoofdstukje of

twee aan.

Vier jaar geleden kwam ik thuis van een fantastisch Erasmus-jaar in Zürich. Ter-

wijl ik daar zat, had Daniël De Zutter mij een doctoraatsbeurs geregeld, dus toen ik

terug was, kon ik onmiddellijk beginnen met het ‘wetenschappelijk onderzoek’. Die

Forschung hatte ich schon in Zürich kennengelernt, und hat mir dank Dirk, Christophe

und Rhüdiger ganz viel Spaß gemacht. Vroeger kon ik mij bij dat onderzoek nooit

veel voorstellen, maar ‘t had er altijd ‘wijs’ uitgezien, afgaande op verhalen van opa,

nonkel Piet en nonkel Jo. Na ongeveer een jaar ben ik enigszins de weg kwijtge-

raakt, maar gelukkig heeft Daniël mij weer op het goede spoor gezet. Daniël is een

opmerkelijk promotor. Zijn vermogen om ogenblikkelijk en volledig geconcentreerd

om te schakelen tussen alle zaken die hij aan zijn hoofd heeft, is verbluffend. En

van die hoofd-zaken waren er steeds vele, als hoofd van onze onderzoeksgroep en als

decaan van de faculteit of voorzitter van de vakgroep. Steeds was er wel een gaatje

in zijn overvolle agenda, tussen de vergaderingen en de schilderijen in. Ik moest mij

trouwens steeds haasten om hem mijn werk eerder af te geven dan ik het verbeterd

terugkreeg. Dit zou de causaliteit in het gedrang hebben gebracht, zoals u begrijpt.

Het is motiverend om een promotor te hebben die actief is geı̈nteresseerd in het on-

derzoek en naast een bijzonder scherpe geest ook een brede en gezonde kijk heeft op

het vakgebied. Bedankt Daniël, het was op alle vlak een waar genoegen!

Het gebrek aan zonlicht in onze duistere bureau werd, behalve door de befaamde

bureaulampjes, meer dan goedgemaakt door de warme sfeer tussen ons allen, intec’ers

én telin’ers, hoewel beide partijen beweren dat het bureau eigenlijk hen toebehoort.

Meer dan eens viel er een deuntje muziek te horen, van zwaar klassiek tot lichte jazz,

en soms zelfs live. Eerder dan wiskundige formules, verschenen er op ons whiteboard

krachtige Italiaanse termen (non preoccuparti, Luigi, manteniamo la discrezione) of

fijnheden in het Nederlands. Literaire thema’s passeerden de revue, maar evenzeer
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de nieuwste uitspattingen van Silvio B., of het verloop van deze quiz. Wouter, Luigi,

Koen, Carla - jij die de stilte doorbrak, Frederick, Sofian, Patrick, Francesco: het was

bijzonder aangenaam. Jullie zijn van mij nog niet af, ik spring wel weer eens binnen!

De voorbije jaren in het Technicum op verdieping -T met zijn openstaande deuren

waren bijzonder aangenaam. Met dank hiervoor aan de professoren Daniël, Luc,

Femke - die ons te vroeg heeft verlaten, Hendrik, Tom, Ann, en uiteraard profes-

sor Van Bladel, onze collectieve wetenschappelijke peetvader. Evenzeer bedankt aan

alle collega’s voor een aantal onvergetelijke conferenties, discussies in de gang, pool-

avonden, Brug- of park-middagen, twaalfurenloop- en (EM)-café-momenten: Anne-

lies, Bart, Ben, Celina, Damiano, Dieter, Dirk, Dong, Dries, Freek, Gunther, Ignace,

Jan, Joris, Jürgen, Kristof, Lei, Luc, Maria Lucia, Peter, Pieterjan, Roald, Sara, Wouter.

Een speciaal woord van appreciatie en dank is gericht aan Isabelle, die mij met een

onverklaarbaar geduld uit de administratieve penarie wist te halen, telkens ik daar

achteloos in verzeild was geraakt.

Onvergetelijk zijn de vele Zondagavonden met de ‘bende’, vroeger vaak in Gent,

met bierhuistrappisten of trappistenhuisbier, nu vaker in huiselijke kring. Bart, Hilde,

Frederik, Julie, Jan, Griet, Koen en Katrien, moge deze traditie blijven bestaan! Boven-

dien was er nog wel eens tijd voor een verre duik of frisse fietstocht. Wim, bedankt

voor het eeuwige enthousiasme! Ook de muziek bracht de nodige afwisseling van

het ‘thema met variaties’ waarover dit doctoraat handelt. Hierbij dank ik in de eerste

plaats Michael, voor meer dan enkel de fantastische lessen, en eveneens Philip en Bart,

et Baudoin, pour une faveur exceptionnelle. Zum Schluß möchte ich auch ganz gerne

Clemens und Fritze danken, für ihre Freundschaft und das Querflötestimulans!

Beste mama en papa, jullie onafgebroken steun, al 33 jaren lang, was onontbeerlijk

voor dit doctoraat. Ik kan te allen tijde op jullie rekenen, bedankt voor alle moeite en

de vele kansen die ik kreeg! Toon, Bieke en Sven, Jan, Nele en Herbert met kleine

Soetkin, jullie zijn een familie om fier op te zijn.

Tenslotte kom ik aan de persoon die eigenlijk reeds thuis hoort in alle voor-

gaande paragraafjes, behalve misschien in dat over ‘t werk. Hoewel - ik vrees dat

ze wel geduldig het één en ander heeft moeten aanhoren over de ‘eierdoosfuncties’

(en ik beken met spijt dat op onbewaakte momenten het woord ‘dirichletfuncties’

ook wel eens viel), over het ‘balkje’, of de nabijheid van steeds een nieuwe deadline.

Laure-Ann! Zonder jouw jeugdige, muzikale, medische, en liefdevolle steun zouden

de laatste jaren er heel wat donkerder hebben uitgezien. Voor het steeds opengaande

deurluikje in de Burvenichstraat, de gastvrijheid van je familie, jouw inspiratie tot

muziek, je medelijden met de studenten die ik examen gaf, voor meer dan ik hier kan

opsommen: bedankt, merci!

Bijna ter bestemming, en nog steeds schijnt de zon...

Thomas Demeester

ergens tussen Brussel en Gent

16 oktober 2009



In grateful memory of my grandfather

GERARD DEMEESTER

a noble man
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Samenvatting

Het onderwerp van deze doctoraatsthesis kadert in het onderzoek naar metallische

interconnecties in de elektronica. Doordat de kloksnelheden in moderne digitale sys-

temen steeds verder toenemen, treden steeds vaker complexe elektromagnetische ver-

schijnselen op. Deze zorgen ervoor dat de conventionele simulatoren voor elektro-

nische circuits niet meer voldoen voor een betrouwbaar ontwerp, en moeten aangevuld

worden met een meer diepgaande elektromagnetische analyse. Deze elektromagne-

tische analyse is zowel noodzakelijk voor de interconnecties die de signalen verdelen

als voor de voedingsnetwerken. Op elektronische printplaten, waar de connecties vaak

‘elektrisch lang’ zijn, komen de elektromagnetische effecten sterk tot uiting onder

de vorm van golfverschijnselen die de signaalkwaliteit kunnen aantasten, waaronder

tijdsvertraging, vervorming, reflecties en demping. De vaak aanzienlijke demping

wordt voornamelijk veroorzaakt door hoogfrequente verliezen die optreden als gevolg

van het stroomverdringingseffect in de geleiders. Ook in geı̈ntegreerde schakelingen

(chips) geven de connectiestructuren aanleiding tot ongewenste effecten. Deze wor-

den tegenwoordig steeds belangrijker door de sterke miniaturisatie en de toenemende

complexiteit van de systemen. Overspraak, of de interferentie tussen verschillende

signalen, is hier het voornaamste fenomeen. Deze overspraak wordt veroorzaakt door

capacitieve en inductieve koppeling tussen geleiders, die bovendien soms nog wordt

versterkt door conductieve koppeling in het halfgeleidersubstraat.

Om deze parasitaire effecten te kunnen voorspellen, wordt gebruik gemaakt van

elektromagnetische simulatieprogramma’s. Deze laten toe om, uitgaande van de be-

schouwde interconnecties, hun zogenaamde transmissielijnparameters te bepalen, die

dan worden in rekening gebracht bij de simulaties van de totale circuits. Een aan-

tal reeds bestaande transmissielijnmodellen kunnen moeilijk overweg met elektrische

verliesfenomenen. Ze zullen bijvoorbeeld de metallische geleiders als ‘perfect’ (dus

verliesloos) onderstellen, wat niet langer aanvaardbaar is, of komen in de moeilijkhe-

den indien het substraat sterk geleidend is. De wetenschappelijke stand van zaken op

het gebied van tweedimensionale transmissielijnmodellen omvatte bij de start van het

huidige doctoraatsonderzoek (i) exacte multigeleidermodellen die echter enkel per-

fecte geleiders en lage substraatverliezen aankunnen, (ii) een model voor slechts een

enkele signaalgeleider, dat nu wel willekeurige substraatverliezen in rekening brengt,

en (iii) een nieuwe simulatietechniek voor rechthoekige geleiders, die d.m.v. een accu-
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rate randintegraalformulering toelaat om heel nauwkeurig de verliezen te modelleren,

in het bijzonder bij de hoogste frequenties waarbij de stroom zich bevindt in een

dun laagje onder het geleideroppervlak. Deze nieuwe methode is gebaseerd op de

oppervlakte-admittantie operator, die zorgt voor een verband tussen het tangentieel

elektrisch en magnetisch veld aan de geleiderrand. Ze is recent ontwikkeld aan de

onderzoeksgroep Elektromagnetisme van de Vakgroep Informatietechnologie aan de

Universiteit Gent. Dankzij een aantal gunstige eigenschappen die te maken hebben

met de zogenaamde Dirichlet-Neumann operator, ligt deze techniek aan de grond-

slag van dit werk. De modellen (ii) en (iii) zijn gebaseerd op een benadering van de

vergelijkingen van Maxwell, met name de onderstelling dat in de dwarse richting van

de geleiders geen golffenomenen optreden. In de meeste praktische situaties houdt

deze benadering stand, zowel op printplaten als in chips, en daarom wordt ze ook hier

gebruikt.

Het eerste hoofdstuk beschrijft de ontwikkeling van een uitgebreid tweedimen-

sionaal transmissielijnmodelmet geleiders in een diëlektrisch en/of halfgeleidend sub-

straat. Het bestaandemodel (ii) kan worden uitgebreid tot een multigeleidermodel, in-

dien het reciprociteitsprincipe wordt gehanteerd, in plaats van het behoud van energie.

De gegeven numerieke voorbeelden tonen duidelijk dat het model zowel de geleider-

als de substraatverliezen correct in rekening brengt (met o.m. het trage-golf effect).

Doordat de berekening van de Dirichlet-Neumann operator enkel kan gebeuren voor

een rechthoek, zijn alle materialen combinaties van rechthoeken, maar dit is geen es-

sentiële beperking van het model zelf.

In de daaropvolgende hoofdstukken worden een aantal aanverwante onderwer-

pen gedetailleerd besproken. Eerst wordt aangetoond dat het voorgestelde model

ook samengestelde geleiders aankan, via de studie van gelaagde en gecoate gelei-

ders. Bovendien blijkt de Dirichlet-Neumann operator van pas te komen bij de be-

rekening van de inwendige impedantie van geleiders. Dit onderwerp wordt met de

nodige omzichtigheid behandeld, want het betreft een fel besproken thema in eerdere

literatuur. Verder wordt ook een nieuwe berekeningswijze voor de Dirichlet-Neumann

operator voorgesteld, die niet enkel veel sneller is, maar tevens, naast de oorspronke-

lijke toepassing op goede geleiders, toelaat om diëlektrische en halfgeleidende mate-

rialen te modelleren. Deze methode is gebaseerd op een ontbinding in de modi van

parallelle-plaat golfgeleiders, in plaats van de Dirichlet eigenfuncties, zoals voordien.

Hoofdstukken vier en vijf behandelen de berekening van de Dirichlet-Neumann

operator voor driehoeken, waardoor het transmissielijnmodel nu ook combinaties van

veelhoekige geometrieën toelaat. De voorgesteldemethode laat toe om het even welke

veldverdeling binnen in de driehoek te ontbinden in de bijdragen van drie incomplete

sets van modi van parallelle-plaat golfgeleiders. De convergentie-eigenschappen van

de iteratieve methode worden onder de loep genomen, en via een aantal voorbeelden

wordt getoond dat de methode correcte restultaten oplevert. In één van de voorbeelden

worden trapeziumvormige geleiders bestudeerd. Aangezien de resultaten toch signifi-
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cant afwijken van deze voor rechthoekige geleiders, gaan we dieper in op het gedrag

van de velden nabij geleiderhoeken. De nabije elektromagnetische velden en een aan-

tal afgeleide veldgrootheden op het oppervlak worden onderzocht als functie van de

frequentie en de grootte van de hoek. Om het veldgedrag te onderzoeken en te verge-

lijken met dat van perfecte geleiders, wordt de nieuwe iteratieve techniek aangewend.

Tenslotte wordt ook het verband tussen de velden aan de hoeken en de globale circuit-

parameters kort uitgewerkt.

In het laatste hoofdstuk formuleren we een aantal conclusies, en besluiten met een

aantal suggesties voor verder onderzoek in de lijn van het gepresenteerde doctoraats-

onderzoek.

Een eerste appendix bundelt twee conferentiepapers die achtereenvolgens gaan

over het design van een differentiële lijn en de uitbreiding van de berekeningswijze

voor de Dirichlet-Neumann operator van driehoeken naar convexe veelhoeken. In

een tweede appendix staan nieuwe formules voor het berekenen van quasi-statische

Greense-functie-interacties, gebaseerd op een directe integratie van de logaritmische

functie, met een correctieterm die de ongewenste bijdrage van de snede in het com-

plexe vlak wegwerkt. De derde en laatste appendix geeft een afleiding van de exacte

driedimensionale uitbreiding van de oppervlakte-admittantie operator, gebaseerd op

een superpositie van de modi van rechthoekige golfgeleiders.





Summary

The work presented in this doctoral thesis is situated in the field of interconnect mod-

eling. Due to the ever higher operating frequencies, a number of high-frequency elec-

tromagnetic phenomena form the reason why conventional circuit simulation tools are

nowadays insufficient for a reliable design and must be complemented with electro-

magnetic field analyses. The main culprit is the interconnect network, used to dis-

tribute both power and signals. This is the case on printed circuit boards, where the

interconnects are often electrically long, resulting in wave phenomena such as signal

delays, distorsion, and reflections, as well as an important high-frequency attenuation

due to skin effect losses in the conductors. Also in integrated circuits (chips), the inter-

connects give rise to signal integrity problems, and the undesired effects are becoming

a real issue, due to the present miniaturization and increase in complexity. The main

effect is due to ‘crosstalk’, interference between several signal conductors, related

to capacitive and inductive coupling effects and sometimes reinforced by conductive

coupling in the semiconductor substrate.

Electromagnetic simulation tools are needed to predict these parasitic effects. They

can extract the so-called transmission line parameters from the physical intercon-

nect configurations, which can then be plugged into circuit simulation software. A

number of transmission line models that were developed in the past have difficulties

with the accurate simulation of losses. For example, they often consider the signal

lines as perfect (lossless) conductors, which is no longer acceptable, or they cannot

deal with high-loss substrates. The state of the art in transmission line modeling for

two-dimensional metallic interconnect structures, by the start of the presented Ph. D.

included (i) full-wave multiconductor transmission line models that assume perfect

conductors and low-loss layered substrates, (ii) a single-conductormodel when taking

semiconductor substrate effects into account, and (iii) a new simulation technique for

rectangular conductors, to deal with losses up to skin effect frequencies by means of

a very accurate boundary integral formulation. This new technique is based on the

surface admittance operator, which constitutes a relationship between the tangential

electric and magnetic fields along the rectangle’s boundary. It was recently developed

in the electromagnetics group of the Department of Information Technology at Ghent

University, and is at the basis of this work, because it has some favourable proper-

ties, related to the use of the so-called Dirichlet to Neumann boundary operator. The
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models (ii) and (iii) are based on an approximation of Maxwell’s equations, assuming

there are no wave phenomena in the transverse direction of the considered intercon-

nects. This condition is fulfilled for most practical configurations, both on-chip and

on-board, and is therefore assumed for the model developed in this thesis as well.

In the first chapter, a full-fledged two-dimensional multiconductor transmission

line model in the presence of conductors with a finite conductivity and a semiconduct-

ing and/or dielectric substrate is developed. The existing single-conductor model (ii)

can be extended in a consistent way to a multiconductor model, by invoking mode

reciprocity, rather than the conservation of power. The shown numerical examples

clearly demonstrate the model’s capability to deal with the conductor and substrate

losses (including slow-wave effects). As the calculation of the Dirichlet to Neumann

operator is limited to rectangular shapes, all materials are combinations of rectangles,

but this is no essential restriction of the model itself.

In the next few chapters, a number of related topics are examined in detail. First,

it is shown that the developed method is capable of simulating composite conductors,

and some characteristics of layered and coated conductors are explored. Furthermore,

the Dirichlet to Neumann operator turns out to be a useful tool for the calculation

of the internal impedance of conductors, a topic that is treated with due care, as it

is a highly debated topic in previous literature. A new calculation method for the

Dirichlet to Neumann operator as used in the transmission line model is presented

as well, extending its original possibilities as a conductor modeling tool to dielectric

and semiconducting materials, and allowing a much faster calculation. The method is

based on an expansion in parallel-plate waveguide modes instead of, originally, on a

Dirichlet eigenfunction expansion inside the considered rectangle.

The fourth and fifth chapter deal with the calculation of the Dirichlet to Neumann

operator for triangles, enlarging the range of possible simulation configurations for

the transmission line model to combinations of polygonal geometries. The presented

method is based on an expansion in three incomplete sets of parallel-plate waveguide

modes, which together allow to represent any possible field pattern inside the consid-

ered triangle. The convergence properties of the iterative method are examined and

some numerical examples demonstrate its correctness. One of the included simula-

tions investigates the behavior of trapezoidal conductors. In response to the obtained

results that display a significant difference with the rectangular conductor case, the

field behavior near conductor corners is investigated in more detail. The electric and

magnetic field, as well as related field quantities on the surface, are carefully investi-

gated as a function of the frequency and the wedge angle. The new iterative simulation

method is successfully applied, to inquire into the field behavior at the edge, and for a

comparison with perfect conductors. Finally, the direct relationship between the fields

near the corners and the overall circuit characteristics is briefly worked out.

The final chapter formulates some overall conclusions and gives several sugges-

tions for further research, following the line of work presented in this thesis.
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In a first appendix, two conference papers are reproduced, which deal with, re-

spectively, the design of an on-chip differential conductor pair, and the extension of

the calculation method for the Dirichlet to Neumann operator for triangles to convex

polygons. The second appendix gives new formulas to be used for the calculation of

quasi-static Green’s function interactions, based on a direct integration of the loga-

rithmic function, with a correction term to compensate for the superfluous branch-cut

contribution. Finally, the third appendix gives a derivation of the full-wave three-

dimensional equivalent of the surface admittance operator, based on the superposition

of rectangular waveguide modes.
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Introduction

The modeling of high-speed interconnects

From the middle of the 20th century onwards, a number of important inventions in

the field of electronics have drastically changed our everyday life. A first milestone

was the invention of the transistor, a semiconducting device acting as an amplifier

or a switch, first used for military radio applications, and which is still one of the

most fundamental electronic building blocks. A further step forward was the devel-

opment of the printed circuit board (PCB), which is, basically, a mechanical support

containing electronic components (transistors, resistors, capacitors, . . . ). These are

connected by means of conductive traces, which are etched from copper sheets, lam-

inated onto a non-conductive substrate. Finally, perhaps the most imporant invention,

the integrated circuit (IC) was developed, which allowed to embed several transistors

and passive components on the surface of a thin substrate of semiconductor material.

This announced the start of a rapid evolution in the miniaturization and complexity

of electronic circuits, ranging from tens of transistors in the early sixties to tens of

billions of transistors in nowadays very-large-scale-integration (VLSI) circuits. IC’s

are often digital devices, designed to process binary signals, but can also be analog

devices such as operational amplifiers, or even combinations that process or convert

both continuous (analog) and digital signals.

Numerous electronic devices that are part of everyday life, such as mobile phones,

gps, digital hi-fi equipment, computers, and many others, contain IC’s mounted on

printed circuit boards. Modern semiconductor technologies allow speeds of 40 GBit/s

and higher. At such high frequencies, the chip designer can no longer consider the IC

as a network of discrete (‘lumped’) elements, but needs to take into account a number

of electromagnetic effects that would otherwise degrade the quality of the electrical

signals, to the point where errors would occur in digital data streams, such that the

whole system would become unreliable or even fail. Most of these ‘signal integrity’

issues [1–3] are related to the electrical performance of the interconnections between

the different electronic devices. Especially if the signals are transmitted over long

distances and at high bit rates, all kinds of wave effects deteriorate their quality.

Signal integrity problems can occur on-chip, as well as on the PCB. A discussion

of the different mechanisms would fall outside the scope of this work, and therefore

only a few examples are given here, directly related to the topics covered in the next

chapters. On a PCB, the dimensions of the interconnects with respect to the bit rate,
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are often such that the metallic traces are operated in the skin effect mode, which re-

sults in an important high-frequency attenuation. The lengths of the lines often give

rise to wave phenomena and, hence, signal delays. Moreover, the microstrip traces

are dispersive, which might cause a distortion of the wave forms. This is due to the

losses (both in the conductors and in the dielectic substrate) and to the electromag-

netic field pattern that tends to concentrate in the substrate for increasing frequencies,

corresponding to a gradually decreasing phase velocity.

In digital IC’s, crosstalk is one of the most important signal integrity issues. It

basically means that signals are affected by other, nearby, signals. Capacitive and

inductive coupling phenomena are very often at the origin of crosstalk. Another pos-

sible mechanism is conductive coupling of different signal lines through the lossy

(semiconducting) substrate.

For high-speed systems, design engineers often use the technique of differential

signaling. This signifies that the information is transmitted in two complementary

signals over a double interconnection, and the receiver only takes into account the

difference between both received signals. The major advantages of this technique are

a higher immunity for fluctuations in the ground potential or the common mode, a

higher noise immunity, and a better protection against electromagnetic interference

(EMI) or crosstalk. However, to ensure an optimal performance of these interconnec-

tions, they have to be carefully designed. The shielding against outside noise, e.g.,

becomes better for a smaller spacing between the differential lines (allowing also a

higher trace density), but then their capacitive coupling increases, together with the

attenuation. Also, the value of their differential characteristic impedance has to be

accurately known for the termination of the lines, in order to prevent from reflections.

A lot of research is being performed on high-speed interconnects, and on pack-

aging in general, in order to keep up with the miniaturization of IC’s according to

Moore’s law, and the increase in operating frequencies. A challenging new on-chip ap-

plication, e.g., are the so-called multiband RF-interconnects [4] which use electrically

long on-chip transmission lines, as a fast and powerful alternative to the traditional

RC-limited interconnects.

In all the mentioned examples, both on the PCB and on-chip, and regarding ei-

ther signal integrity issues, or for direct design purposes, the frequency-dependent

transmission line parameters of the considered interconnects are of a vital impor-

tance. The resistance, inductance, capacitance, and conductance of the lines per unit

of length (p.u.l.) lead to all required parameters, such as the phase velocity, the atten-

uation factor, and the characteristic impedance. For coupled lines, there exist several

fundamental modes, with different propagation characteristics, which can all be found

as the solution of an eigenvalue problem, once the basic p.u.l. parameters are deter-

mined. For one differential pair, e.g., not only for the so-called ‘differential mode’

(used for signal propagation), a correct impedance matching is required, but also for
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the ‘common’ mode1 (in a perfectly symmetric configuration only excited by noise

coupled into the circuit), in order to avoid EMI problems. The required transmission

line model should be able to deal with multiple coupled conductors, each with a finite

conductivity, and should be capable of dealing with current crowding effects up to

skin effect frequencies. Furthermore, it is important that conductive coupling through

semiconducting substrates is taken into account as well.

In the past, a lot of research on multiconductor transmission line models has al-

ready been done. The existing theories are not repeated here, as there is a lot of

excellent literature on the subject, e.g., in [5] and [6]. These books provide an in-

depth overview of and a comparison between many techniques that have been and are

used for multiconductor line analysis. In general terms, the models presented in [5]

and [6] deal with full-wave solutions of Maxwell’s equations for two-dimensional

multiconductor structures, containing perfect electric conducting (PEC) signal lines,

and mostly low-loss dielectric substrates. Important to mention is the fact that the

laws of electromagnetics do not unambiguously lead to a transmission line equivalent.

This is only true for low frequencies, the so-called quasi-TEM (transverse electric and

magnetic) case. This issue is extensively described in [6], together with the different

types of transmission line models that can be extracted from Maxwell’s equations.

Each possible model is based on a, not entirely arbitrary, ‘extra’ condition, such as the

requirement that all modes in the actual interconnect configuration and in the model

propagate the same complex power, or, that the model remains reciprocal if no non-

reciprocal materials are present.

A further advance in the field was made with [7], in which the current crowding

as a function of frequency, including the strong skin effect regime, for conductors

with finite conductivity was taken into account. The method was superior with respect

to already existing, volume-discretization based methods, because it makes use of a

boundary integral equation only, hence more accurately capturing the skin effect with

less unknowns. It extends the principle of the asymptotic local surface admittance

of a conductor at very high frequencies to a global (i.e., on the conductor’s surface)

surface admittance. The starting point is an equivalent surface current density source

in free space (or embedded in any other background medium such as a substrate),

replacing the original conductor, but exciting the original fields outside of it. The rela-

tionship that determines this equivalent surface current anywhere on the conductor as

a function of the tangential electric field everywhere on the surface, called the surface

admittance operator, is constructed by means of the Dirichlet to Neumann (DtN) op-

erator. Mathematically the DtN operator needed in this work is defined as follows. A

scalar function f(x, y) satisfies the two-dimensional wave equation ∇2
t f + k2f = 0

over a surface S with boundary c. When k = 0 this equation reduces to the Laplace

1Design engineers are used to call it the ‘differential’ and the ‘common’ mode, whereas people in elec-

tromagnetics refer to it as the ‘odd’, respectively, the ‘even’ mode. Throughout this thesis, the latter desig-

nation is used.



6 INTRODUCTION

equation and when it takes a purely imaginary value it reduces to a diffusion equa-

tion. For any prescribed value of the function f on the boundary c, the DtN operator

maps this value onto the corresponding normal derivative ∂f/∂n on c. However, the

method presented in [7] only deals with conductors in homogeneous space, and, as

opposed to the full-wave methods mentioned earlier, is only valid in the quasi-TM

(transverse magnetic) frequency range2. However, for many practical interconnect

applications, the quasi-TM validity range completely covers the frequency band of in-

terest. Because of its major advantages in the modeling of non-perfect conductors, the

DtN operator is the basic building block of the work presented in this doctoral thesis,

which deals with the more general transmission line problems as mentioned earlier.

Outline of this thesis

The main research result presented in this dissertation is a new reciprocity-based lossy

multi-conductor transmission line model in the quasi-TM frequency range. However,

in parallel with the development of the transmission line model itself, some additional

research was performed in the field of conductor modeling, and a new algorithm was

proposed to improve the calculation efficiency and to extend the possibilities of the

DtN operator. These results are also presented in this work. The successive chapters

do not reflect the chronological order of the research. Instead, the thesis starts with a

global description of the transmission line model, and then one by one covers these ad-

ditional research topics. As the work of the past three years has resulted in a number of

papers published in or submitted to international journals, and which precisely cover

the mentioned topics, the text of these papers is entirely reproduced in the different

chapters. Only on certain locations in the text, by means of footnotes, a few comments

are given to further clarify the covered topic, or to make a link with other chapters.

This approach has the advantage that the chapters are relatively self-consistent and

very readable. However, this means there often is some overlap between chapters, in

particular in their introduction, as all the papers and hence chapters of this thesis are

situated in the context of high-speed interconnect modeling, as already treated in this

introductory chapter.

The following paragraphs provide an overview of the different chapters and ap-

pendices, briefly summarized and situated among the rest of the presented research.

Chapter 1

The first chapter (see [8]) presents a new transmission line model. A lot of attention

is devoted to explaining why and how a reciprocal model is obtained, by carefully

defining the signal currents in the model. Next, consistent with the defined reciprocal

2Notice the difference with respect to the quasi-TEM models mentioned above. In quasi-TM models,

the longitudinal component of the electric field inside the conductors and semiconductors with a finite

conductivity is taken into account.
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model, a capacitance-conductance and an inductance-resistance problem are formu-

lated, to be solved with the Method of Moments (MoM). The model is valid within

the quasi-TM frequency range, as is also explained with care, and deals with metallic

signal conductors in the presence of both semiconducting and dielectric substrates.

In the numerical examples, the emphasis is in the first place on the validation of the

method, by comparing the results with data that are available in literature for single

line configurations. Other important aspects in the numerical results are the modal

analysis of multi-line configurations, and the influence of the semiconducting sub-

strate (with the so-called slow-wave behavior). In this chapter, all simulated configu-

rations only consist of conductors, dielectrics and semiconductors with a rectangular

shape or composed of rectangles. In Chapter 4, the DtN operator is determined for

triangular shapes, such that a whole range of more complex geometries can be treated,

but for which the presented transmission line model remains of course valid.

Chapter 2

The second chapter focusses on composite conductors, covering two different ap-

plications. In the first part [9], the broadband resistive and inductive behavior of lay-

ered and coated conductors is investigated. The main purpose of this contribution is

to demonstrate the model’s capability of handling thick conductors over a broad fre-

quency range. In the theoretical section, the formulas that are required to treat compos-

ite conductors are again written down, but for the one-conductor case only. Naturally,

the more general formulation of Chapter 1 remains valid (which is used to handle the

more complex numerical examples). In addition, it is shown how the internal current

density can be calculated by means of an expansion in Dirichlet eigenfunctions.

In the second part [10] of the chapter, the internal impedance of conductors is

investigated. A new derivation allows to determine the internal impedance from the

knowledge of the surface admittance operator only, which in the special case of a

homogeneous rectangular conductor is identical with a definition already available in

literature. The new technique allows to directly calculate the internal impedance of

composite conductors or of conductors with a complicated conductor shape. However,

since the issue has been a topic of discussion in previous papers and as an alternative

definition for the internal impedance is also generally accepted, a boundary integral

form of that alternative definition was developed as well, in order to compare our

definition to the existing one. In the examples, not only the difference between both

definitions is compared, but the influence of the conductor corners also receives some

attention, further investigated in Chapter 6 as the ‘edge effect’.

Chapter 3

This chapter (see [11]) deals with the discretization of the DtN operator for a rect-

angle, as used in the transmission line model presented in Chapter 1. The theory

is however given only at this point, as the approach and notations are very similar
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and therefore helpful to grasp to the more complicated case presented in Chapter 4

for triangles. It is briefly described how the electric field inside a conductor (or the

electric potential inside a dielectric) is expanded in terms of parallel-plate waveguide

modes, and how the numerical convergence problems at the corners are dealt with.

For completeness, and as [11] is an (invited) extension of [12], the main applications

of the DtN operator are briefly presented again, combined with some extra numerical

examples, dealing with the internal impedance of composite conductors, and with a

multi-conductor on-chip configuration.

Chapter 4

In this chapter, the Iterative Combined Waveguide Modes (ICWM) algorithm (see

[13]) is introduced. It allows to calculate the DtN operator for triangular geometries.

The main idea behind the method is to expand the current density or electric potential

by combining three incomplete sets of parallel-plate waveguide modes, that are how-

ever each complete on one of the triangle’s sides and form the exact solution on the

inside. The described iterative method allows to determine the expansion coefficients,

and, from the analytical expansion functions, the DtN operator. The convergence

characteristics of the method and its accuracy are thoroughly investigated, and some

comparison with published data confirms its correctness. The presented numerical

examples involve trapezoidal conductors and, as a demonstration of the ICWM tech-

nique applied to dielectric triangles, a coplanar waveguide with a non-planar substrate.

Chapter 5

The focus in this chapter is on the field behavior near a conductingwedge (see [14]).

The known singular field behavior is verified and a comparison is made with perfect

conductors, using results obtained with the ICWM algorithm. Furthermore, the elec-

tric field inside the conductor and near the edge is visualized, this time by means of

the parallel-plate waveguide expansion introduced in Chapter 4 (as opposed to the

Dirichlet expansion employed in Chapter 2). The behavior of the fields (including

the equivalent current density) is in particular investigated as a function of the wedge

angle, which has an important impact on the circuit parameters. As a side result,

the DtN operator leads to a new local surface impedance approximation for conduc-

tors, primarily meant to demonstrate the physical properties of the equivalent surface

current density. Throughout the text, the quasi-TM approximations are reconsidered

with care, now focussing on the behavior near corners, and on the validity of a con-

stant boundary potential voltage excitation of conductors with edges. Finally, a link is

made between the tangential magnetic field at a conductor’s boundary, and the p.u.l.

circuit resistance and inductance of that conductor.

Chapter 6

The final chapter summerizes the progress made in the field of transmission line
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modeling and conductor modeling, including the new techniques for DtN operator

calculations. Some suggestions are listed for further research in these domains, as

there are a lot of possibilities for further developments in interconnect modeling, in-

cluding the specific topics covered in this work.

Appendices

The research performed in the framework of this Ph.D. dissertation, resulted in a

number of contributions to the proceedings of international conferences. The technical

content of most of these papers is described in much more detail in the journal papers

that constitute Chapters 1 to 5, and these papers are therefore not included. Two of

them, however, contain some extra data and are reproduced in Appendix A. The first

paper [15] refers to the model presented in [8] and gives simulation results for an

on-chip interconnect configuration, focussing on some design aspects of a differential

conductor pair, including an example of a finite length configuration with a specific

source and load. The second paper [16] presents a direct extension of the ICWM

algorithm theory of Chapter 4, which was, although perhaps obvious, included as

well, for the sake of completeness.

Appendix B presents a new analytical calculation of the quasi-static interaction

integrals in free space, for an arbitrary position and orientation of the considered in-

tegration segments. A direct implementation of the presented formulas was used for

the simulations presented in Chapter 5 (including the last example of Chapter 4). The

method is based on a direct integration of the logarithmic function, with a compensa-

tion term to cancel possible incorrect contributions from integrating over the branch

cut in the complex plane.

Finally, Appendix C gives the field expansions and describes the procedure to

discretize the full-wave surface admittance operator on the surface of a homogeneous

rectangular parallelepiped, by means of an expansion in the modes of three rectangular

waveguides.
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Dirichlet to Neumann

Boundary Operator
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⋆ ⋆ ⋆

We present a new multiconductor transmission line model for general two-

dimensional lossy configurations, based on mode reciprocity. Particular atten-

tion is devoted to elucidate the validity of the quasi-TM model and the approx-

imations that have to be invoked to obtain this model. A new derivation of the

complex capacitance matrix is given, especially taking into account the pres-

ence of semiconductors. This derivation automatically leads to a non-classical

circuit signal current definition and demands for a formulation of the complex

inductance problem consistent with that definition. The relevant RLGC circuit

matrices are obtained by solving boundary integral equations only, making

use of the Dirichlet to Neumann boundary operator for the different materials.

This allows to simulate complex MIS-structures, as shown in the numerical

examples.
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1.1 Introduction

Due to the increase in operating frequencies, signal integrity issues become more and

more critical, not only on the package and board level but also at the chip level. In

nowadays very-large-scale-integration (VLSI) circuits, lumped resistance-capacitance

(RC) models no longer suffice for adequate signal analysis but are replaced by trans-

mission line models. In the past much attention has been paid to the analysis of metal-

insulator-semiconductor or MIS transmission lines. A very good overview of this

work is given in the introduction of [1] and will not be repeated here. Using a vari-

ety of numerical techniques, these papers analyze the fundamental mode behavior as

a function of frequency and semiconductor resistivity, revealing the existence of di-

electric, slow-wave and skin-effect modes. Additional data based on quasi-analytical

approaches and measurements can e.g. be found in [2–4]. It is interesting to draw the

attention to a series of papers dealing with semiconductor substrate noise coupling,

see [5] and the references therein. These papers use and/or discuss the validity of

electroquasistatic RC-modeling to predict noise coupling and in this way also deal

with the question of approximating the full Maxwell equations in the presence of

semiconductors. Furthermore, an efficient quasi-TEM analysis for lossy lines, using a

Finite Element approach and its full-wave extension to semiconductor traveling-wave

devices, including self-consistent carrier transport, have been presented in [6] and [7].

In [1] the quasi-TM model proposed in [8] is extended to include non-perfectly

conducting metallic conductors. As shown e.g. in [9] and [10] these conductor losses

can become dominant for narrow strip configurations. The transmission line model

developed in [1] is obtained by carefully defining the meaning of voltage and current,

remaining compatible with the complex power concept [11,12]. To obtain the complex

capacitance and inductance per unit of length (p.u.l), the quasi-static electric potential

and the longitudinal current density are determined numerically using a combination

of the Method of Lines (MoL) and the Method of Moments (MoM).

In this paper the quasi-TM analysis of [1] is extended to the multiconductor case.

Section 1.2 discusses the general geometry of the considered problem together with

the relevant field equations. Contrary to what one might expect, the multiconductor

case does not turn out to be a straightforward extension of the single line case. Sec-

tion 1.3 shows that a coupled transmission line model with each modal voltage-current

(v, i) solution corresponding to a modal field (e, h) solution must be based on mode

orthogonality properties. Hence, the power orthogonality definition used in [1] must

be replaced by a reciprocity based approach [13] as modal fields are not power or-

thogonal in the presence of lossy media. It must be noted that the approach in [11]

is not the only one to enforce reciprocity. As originally presented in [14] and later

extended to more complex configurations in [15] and [16], one can also choose to

enforce power conservation for each mode separately, whereby modal reciprocity is

still envoked to ensure the reciprocity of the resulting circuit model. Section 1.4.1
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presents the theoretical analysis leading to the definition of the capacitance matrix and

to the meaning of voltages and currents. A lot of attention is devoted to clarify the

various approximations that must be invoked to come to a quasi-TM analysis and to

show under which conditions this quasi-TM analysis remains valid. Similar to the

single line case, it turns out that the meaning of current must be interpreted with due

care. To define the complex capacitance matrix, mode orthogonality and hence reci-

procity must again be invoked. Section 1.4.2 is devoted to the numerical solution of

the capacitance problem. For this numerical solution the contrast currents and the

corresponding contrast surface charges are introduced. These charges and the corre-

sponding potential distribution in the cross-section are then determined by solving an

appropriate boundary integral equation with the MoM. To solve this integral equation,

a relationship between the normal derivative of the potential and the potential itself

at the boundary of the different media is needed. This relationship is obtained by ex-

tending the surface admittance approach of [17], based on the Dirichlet to Neumann

boundary operator, to the electroquasistatic case. Section 1.5 discusses the inductance

problem. Starting from the longitudinal component of the contrast current, it is shown

that the longitudinal currents and the complex inductance matrix elements can also

be determined by solving a boundary integral equation essentially using the differen-

tial surface admittance approach of [17] (again taking advantage of the Dirichlet to

Neumann boundary operator). To correctly describe the problem in the presence of

semiconductors, the theory of [17] and [18] has been reformulated as to carefully in-

clude the wave behavior in the longitudinal direction and the non-constant potential

in the cross-section. The potential obtained from the capacitance problem remains

necessary to solve the inductance problem. In contrast to the approach in [1], using

a combination of the MoM and the MoL, the inductance problem is solved by us-

ing a surface integral equation only. The major advantage of such an approach, as

opposed to volume discretization methods, is the considerably reduced number of un-

knowns when simulating large configurations (such as e.g. the example presented in

Section 1.6.3). Especially for the simulation of strong skin-effect behavior, boundary

element methods tend to have a lower computational cost. However, as soon as more

complicated semiconductor models are used as in [7], volume discretization methods

are indispensable. Section 1.6 discusses a series of numerical examples, including

some single-conductor reference examples and the full modal analysis of an on-chip

interconnect structure with four coupled signal pairs. Finally, Section 1.7 provides

some conclusions.

1.2 Geometry of the Problem and Field Equations

Fig. 1.1 shows the general cross-section of the considered multiconductor transmis-

sion line (MTL). It consists of piecewise homogeneous, non-magnetic materials em-

bedded in a lossless homogeneous background medium. In Fig. 1.1 a single PEC



16 A QUASI-TM MULTI-CONDUCTOR TRANSMISSION LINE MODEL

1

4 2

3

5

ǫ0, µ0

z

PEC

Figure 1.1: General two-dimensional cross-section to be considered. 1, 2: signal conductors

(σ ≫ ωǫ), 3: lossless dielectrics (ǫ), 4: lossy dielectrics (σ ≪ ωǫ), 5: semiconductors (σ, ǫ).

(Perfectly Electric Conducting) ground plane is also shown, but its presence is not

mandatory. In the sequel a distinction is made between three types of materials: sig-

nal conductors such as 1 and 2 in Fig. 1.1, for which σ ≫ ωǫ over the considered

frequency range (for a PEC σ −→ ∞), lossless or lossy dielectrics such as 3 and 4 in

Fig. 1.1 for which σ = 0 or σ ≪ ωǫ and semiconductors such as 5. For simplicity, the

homogeneous background medium is taken to be free space (ǫ0, µ0), but the analysis

remains valid for any other dielectric background medium. An ejωt time-dependence

is assumed. The total number of signal conductors is N . Maxwell’s curl equations

can be cast into the following form

∇tez − ∂et

∂z
= −jωµ0 (uz × ht) (1.1)

∇t × et = −jωµ0hzuz (1.2)

∇thz −
∂ht

∂z
= (σ + jωǫ) (uz × et) (1.3)

∇t × ht = (σ + jωǫ) ezuz , (1.4)

where the index “t” stands for the transverse (x, y) components. In the sequel we will

also use the divergence equation

∇t · et +
∂ez

∂z
= 0. (1.5)

We want to obtain a transmission line model for the fundamental modes propagating

along the z-axis. The number of fundamental modes N is equal to the number of

signal conductors (i.e. two in the case of Fig. 1.1). The z-dependence of mode m

(m = 1, 2, . . . , N ) is given by e−jβmz . In the absence of a PEC reference conductor,

one of the conductors must be chosen as the reference conductor and in that case

only N − 1 fundamental modes are needed. In the most general case, a full-wave
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analysis is needed to determine the modal wavenumbers βm and the corresponding

modal field distributions. In this paper a quasi-TM approximation is proposed, based

on the assumption that even at the highest frequency of interest no wave phenomena

occur in the transverse plane. This implies that the wavelength λm = 2π/Re(βm)

of each propagating mode remains significantly larger than the relevant diameter of

the cross-section. Restricting ourselves to the fundamental modes, any solution of

(1.1-1.4) for the transverse fields can be expressed as a superposition of these modes

as [12]

et (r, z) =

N
∑

m=1

Etm (r)
(

K+
me

−jβmz +K−
me

jβmz
)

(1.6)

ht (r, z) =
N

∑

m=1

Htm (r)
(

K+
me

−jβmz −K−
me

jβmz
)

. (1.7)

Etm and Htm are the transverse modal field patterns, K
+
m and K

−
m are the complex

amplitudes of the modes respectively propagating in the positive and in the negative

z-direction and r = xux + yuy.

1.3 Coupled Transmission Line Model

The circuit transmission line model we want to determine, describes the field problem

in terms of voltages, currents, the complex capacitance matrix C̃ = C + G/jω and the

complex inductance matrix L̃ = L + R/jω as

∂i

∂z
= −jωC̃v (1.8)

∂v

∂z
= −jωL̃i, (1.9)

with v(z) and i(z) theN ×1 voltage and current vectors associated with theN signal

conductors. In the absence of a PEC reference conductor, onlyN−1 currents and volt-

ages are needed. A large body of literature, see [12], has been dedicated to investigate

the mapping of the field problem onto a circuit description. One possible approach is

to invoke power conservation together with a precise definition for either the current

(PI-model) or the voltage (PV-model). The latter approach was also adopted in [1] for

the single line case. The PI- and PV-model will only yield (almost) identical results

in the (quasi-)TEM case. For the multiconductor case discussed here, a different ap-

proach based on reciprocity and mode orthogonality will be adopted, as explained and

motivated in the sequel. For a general discussion on the differences between power

based and reciprocity based models, we refer the reader to [12]. It has to be remarked

that for lossless structures, both types of models are identical as the modal fields can
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be chosen to be real.

Just as for the fields in (1.6) and (1.7), the voltages and currents in (1.8) and (1.9)

can be expressed in terms of eigenmodes as

v (z) =

N
∑

m=1

vm

(

K+
me

−jβmz +K−
me

jβmz
)

(1.10)

i (z) =
N

∑

m=1

im
(

K+
me

−jβmz −K−
me

jβmz
)

. (1.11)

The voltage and current eigenmodes vm and im are solutions to the following equa-

tions

jβmim = jωC̃vm (1.12)

jβmvm = jωL̃ im. (1.13)

The reader will remark that the eigenvalues βm are identical in all field and circuit

equations. This property of the model is quite obvious as we require the modal signal

speeds to be identical for the actual fields and for their circuit representation. Further-

more, the modal excitation coefficients K+
m and K

−
m are also identical in the modal

field and modal circuit description. In general, this is only possible in reciprocity

based models by requiring that the following equality holds

∫∫

S

(et × ht) · uzdS = vT · i, (1.14)

with S the total cross-section and with the superindex T indicating the transpose of the

vector. Expression (14) differs from the one used in power based models in which the

complex conjugate of ht and i are used. As a consequence of the fundamental modal

field orthogonality property [12] stating that

∫∫

S

(Eti × Htj) · uz dS = 0, i 6= j, (1.15)

for any modal fieldsEti andHtj , (1.14) also remains valid on a mode per mode basis,

i.e.
∫∫

S

(Etm × Htm) · uzdS = vT
m · im (1.16)

and this property will be needed in the sequel. In the lossy case, using a power based

model, this property is lost because the modes are no longer power orthogonal as in

the lossless case.

In the next sections, starting from the above general description of the field prob-
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lem and its circuit equivalent, we turn to the solution of the quasi-TM problem and to

the determination of the complex capacitance and inductance matrix.

1.4 The Capacitance Problem and the Meaning of

Voltages and Currents in the Transmission Line

Equivalent

1.4.1 Theoretical Analysis

Due to the fact that σ ≫ ωǫ for signal conductors, the cross-sectional tangential

electric field etan at the conductor’s surface must be zero. If this would not be the case,

the presence of such a field would very quickly (i.e. within a few times the relaxation

time ǫ/σ) lead to a redistribution of the surface charges such that etan becomes zero.

etan can be expressed in terms of the vector potential a and the scalar potential φ as

etan = −(∂φ/∂tan)utan − jωatan. Outside the good conductors
1, at is of order

ω, and hence in the quasi-TM approximation, ωat is neglected with respect to ∇tφ

(which corresponds to neglecting hz with respect to ht). The continuity of atan at the

conductor’s boundary implies therefore that etan ≈ −(∂φ/∂tan)utan. This in turn

shows that, for a fixed value of z, φ takes a constant value on all signal conductors’

boundaries, allowing to define the circuit voltages v in (1.9) as these constant potential

values2.

We will now derive a general expression for the capacitance matrix and from this

infer a meaning for the circuit currents i. Cross multiplying (1.3) with et and taking

1Inside the good conductors, however, the quasi-TM approximation et ≈ −∇tφ is not valid (at least
within the skin-effect frequency range). The normal component an of the magnetic vector potential at

the boundary is generally not continuous, hence no conclusions about its amplitude inside the conductor

can be drawn, compared to its value on the outer side of the boundary. et does not have a zero’th order

frequency component inside the conductor (as it has on the outside), and hence jωat cannot be neglected

with respect to et . Note that |et| ≪ |ez| inside the conductor, but in order to accurately describe the
capacitive properties of the line, see Chapter 5, et itself cannot be neglected.

A detailed argumentation to support the fact that et 6≈ −∇tφ inside a conductor, is the following.
If jωat could be neglected, then the surface charge ρc could be written as ρc ≈ −(σ/jω) ∂φ−/∂n,
with ∂φ−/∂n the outward normal derivative of the electric potential, evaluated just inside the conduc-
tor. As soon as the skin depth is significally smaller than the transverse dimensions of the conductor,

(1/jω)∂φ−/∂n becomes proportional to ω−1/2 (for a constant boundary excitation φc = V , and with
∇tφ2 = jωµ0σ φ inside the conductor). This can be easily shown for some simple conductor configu-
rations, such as a long slab or a circle. However, the surface charge on a good conductor is, within the

quasi-TM frequency range, independent of the frequency (apart from a possible influence from a neigh-

boring semiconducting substrate, as is shown further in this chapter). We can come to this conclusion by

formulating an equivalent problem in free space, in which the equivalent surface charge is related to the

electric potential through the quasi-static Green’s function G0 of free space. The result is independent of

the frequency, if no moderately conducting semiconductors are around. This shows that the initial assump-

tion about the surface charge is wrong.
2The fact that the electric potential takes a constant value on a signal conductor’s boundary, at least

within the quasi-TM limit, is further argued in Chapter 5, especially near sharp boundary edges.
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advantage of (1.2) shows that

et ×
∂ht

∂z
= − (σ + jωǫ) (et · et)uz − jωµ0h

2
zuz −∇t × (hzet) . (1.17)

Integrating this over the cross-section S leads to the approximate result

∫∫

S

(

et ×
∂ht

∂z

)

· uz dS = −
∫∫

S

(σ + jωǫ)et · et dS. (1.18)

To obtain (1.18) the contribution of the higher-order term in h2
z was neglected. The

∇t × () term reduces to a vanishing boundary integral at infinity or to a zero contri-

bution on the surface of a PEC conductor, when present. We now insert expansions

(1.6) and (1.7) into the left hand side of (1.18), invoke the mode orthogonality (1.15)

and use (1.8), (1.10) and (1.11) to show that

− vT · ∂i
∂z

= vT ·
(

jωC̃
)

· v =

∫∫

S

(σ + jωǫ)et · et dS. (1.19)

Note that using the power conservation and reciprocity approach of [14–16] does not

allow to obtain (1.19). It would be interesting to investigate how to modify the present

theory to accommodate this alternative approach, but this falls outside the scope of

the present paper. The total cross-section S consists of three parts: signal conduc-

tors, semiconductors and dielectrics (including the background medium). For the di-

electrics the approximation et = −∇tφ holds as the contribution from the vector

potential −jωat is of higher order in ω. For the semiconductors, the following rea-

soning can be adopted. For the frequency range in which σ remains much larger than

ωǫ, the potential φ on the boundary of the semiconductor will remain constant, just

as for a signal conductor. For these frequencies for which this no longer holds, the

semiconductor will behave as a complex dielectric. The potential will not be constant

on its boundary but now (just as for the lossy dielectrics) it is allowed to state that

the approximation et = −∇tφ holds. The neglected term −jωat is very small in the

quasi-TM range, and is therefore negligible with respect to the term −∇tφ. In the

case of a constant boundary potential, this approximation is no longer valid, but then

the total transverse electric field itself becomes very small. The numerical results in

Section 1.6 will confirm that the semiconductor behavior can be captured as described

above.

To further transform the r.h.s. of (1.19), following the above reasoning, the cross-

section S is subdivided in two parts S1 and S2. S1 encompasses the signal conductors

and those semiconductors for which, at the considered frequency, the potential is con-

stant on their boundary. S2 is the remaining part of S and here et = −∇tφ holds.

Taking into account the divergence law (1.5), the contribution from S2 to the r.h.s. of
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(1.19) becomes

∫∫

S2

(

σ + jωǫ
)

et · et dS

= −
∫∫

S2

(

σ + jωǫ
)

(

∇t · (φ et) + φ
∂ez

∂z

)

dS (1.20)

=

∫

c2

(

σ + jωǫ
)

φun · et dc−
∫∫

S2

(σ + jωǫ)φ
∂ez

∂z
dS. (1.21)

The boundary c2 of S2 consists of (i) a contribution at infinity, which drops out, (ii)

possible contributions of dielectrics and/or semiconductors touching each other, but

due to the continuity of (σ + jωǫ)un · et these contributions also drop out and (iii)

contributions at the boundaries between these materials and the signal conductors and

semiconductors with a constant surface potential. In the sequel, the term “relevant” is

used to indicate these semiconductors. In (1.21) the normal un is directed outwards

w.r.t. the good conductors, explaining the change in sign in going from (1.20) to

(1.21). In these remaining contributions (iii), the constant potential can be put in front

of the integration, the continuity of (σ + jωǫ)un · et can again be invoked and the

divergence theorem combined with (1.5), but now for the cross-sections of the signal

conductors and the relevant semiconductors, lead to the following expression for the

first term in (1.21)

∫

c2

(

σ + jωǫ
)

φun · et dc = −
∑

j

φj
∂

∂z

∫∫

Sj

σez dS (1.22)

= −
∑

j

φj
∂Ij
∂z

(1.23)

= jω
∑

j

φjqj . (1.24)

The summation in (1.24) now runs over all signal conductor cross-sections and rele-

vant semiconductor cross-sections, φj is the constant potential, Ij is the total longitu-

dinal current and qj the total surface charge associated with cross-section j. To avoid

confusion with the circuit currents i introduced in (1.8) and (1.9), we use capital I’s

here. To obtain (1.24) and in line with previous approximations, displacement currents

in good conducting materials were neglected with respect to conduction currents. We

now turn back to (1.19) and write it with (1.21) and (1.24) as

vT ·
(

jωC̃
)

· v = jω
∑

j

φjqj −
∫∫

S2

(σ + jωǫ)φ
∂ez

∂z
dS +

∫∫

S1

σet · et dS. (1.25)
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To keep our approximations consistent, comparing (1.22) and the remaining integral

over S2 in (1.25), we see that we have to drop this term because the longitudinal

conduction and displacement currents in S2 are much smaller than the currents in the

signal conductors. Moreover, the last term of (1.25) stands for the contribution from

transverse currents in the good conducting materials and these remain negligible as

compared to the contribution of the longitudinal currents represented by the second

term. Hence, from (1.25), we finally arrive at

vT · C̃ · v =
[

vT vT
sc

]

·
[

q

qsc

]

(1.26)

with q and qsc column vectors containing the charges respectively on each signal

conductor and on each relevant semiconductor and with v and vsc the corresponding

voltages. The voltages vsc depend linearly on v.

According to (1.26), the capacitance matrix can be obtained solving an almost

classical capacitance problem. We will come back to that problem in the next sub-

section. Suffices to say here that two distinct situations can occur. Either one of the

relevant semiconductors touches a signal conductor such that its potential becomes

equal to that of the signal conductor, or, the semiconductor stands free, but in that case

its total charge must remain zero. Together with Laplace’s equation for the potential

this will suffice to determine C̃. Using (1.8), (1.26) can also be rewritten as

vT · ∂i
∂z

=
[

vT vT
sc

]

·
[

∂I

∂z
∂Isc

∂z

]

(1.27)

From the above equation we can now derive the following interpretation for the circuit

currents i in our reciprocity based, quasi-TM model. Suppose that signal conductor n

is put at the non-zero potential vn while all other signal conductor potentials remain

zero. From (1.27) we see that

in = In +
∑

p

vsc,p

vn
Isc,p (1.28)

This shows that the circuit current in associated with signal conductor n must be

interpreted as the actual current running through that conductor increased by suitably

weighted currents running through some of the relevant semiconductors. From the

semiconductors taken into account as good conductors, only those remain present

in the summation over p provided they touch the considered signal conductor, such

that vsc,p = vn. In all other cases their contribution remains zero either because they

touch a signal conductor at zero potential vsc,p = 0, or are standing free, in which case

Isc,p = 0. Above, a lot of, but consistent, approximations have been introduced. Such

approximations are inevitable when trying to come up with a quasi-TM analysis.

In [1], for the single signal conductor case, N = 1, power conservation was in-



1.4 The Capacitance Problem 23

voked to derive an expression for the circuit current i associated with a voltage exci-

tation v, leading to a current expression (eqn. 27 of [1]) differing from the traditional

conduction current found in the quasi-TEM approximation:

i = ic +

∫∫

Ssemicond.

Jz
φ∗

v∗
dS. (1.29)

The current i is the sum of the total longitudinal current ic flowing in the signal con-

ductor and a, by the normalized complex conjugate potential φ∗/v∗ of the semicon-

ductors, weighted contribution of the longitudinal currents flowing in the semicon-

ducting layers. Remark that if we keep the potential under the integral sign in the

contribution of the semiconductors in (1.25), a similar result is obtained. For the ex-

amples considered in [1], our numerical results (see Section 1.6) are identical. This is

a consequence of (i) the fact that the semiconductor contributions to (1.29) are indeed

negligible when their potential is not constant, and (ii) the fact that their contribution

is identically zero when the potential is constant, because in the numerical examples

in [1] all semiconductors touch the ground conductor and/or the surrounding metallic

box which are kept at zero potential.

1.4.2 Numerical Solution

The capacitance problem formulated above can numerically be solved by various tech-

niques. Here we opt for a surface integral equation solution combined with the Dirich-

let to Neumann operator presented in [17], but specifically tailored to the capacitance

problem. To this end all materials are replaced by their equivalent unknown contrast

current source jc =
(

σ + jω(ǫ − ǫ0)
)

e. These sources reside in the homogeneous

background medium and generate the original fields. The z-component of this con-

trast current will serve as the starting point for solving the inductance problem in

Section 1.5, and the transverse component is essential for the capacitance problem.

As all media are piecewise homogeneous, the divergence of jc is zero and no

volume contrast charges are present. However, at each interface between a material

and the background medium, a contrast surface charge density ρeq, given by

ρeq = − jc,n

jω
= −

(

ǫ− ǫ0 +
σ

jω

)

en (1.30)

must be taken into account, with jc,n and en representing the normal components

with regard to the outward pointing unit normal un. The equivalent surface charge

ρeq in (1.30) consists of the actual surface charge and of the so-called polarization

surface charge with respect to the homogeneous backgroundmedium. In reality, more

complex situations such as the interface between a dielectric and a signal conductor

or semiconductor will occur. In these cases, two contrast surface densities ρ+
eq and ρ

−
eq
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are introduced, each defined as in (1.30) with respect to the outward pointing normal.

The sum of ρ+
eq and ρ

−
eq yields the correct total contrast surface charge. Neglecting

ǫ − ǫ0 with respect to
σ
jω in (1.30) at good conductors and relevant semiconductors

(completely in line with the reasoning in section 1.4.1), we immediately see that the

total contrast surface charges on these constant potential surfaces are those needed

in (1.26).

Now consider the potential φeq due to all introduced contrast surface charge densi-

ties. This potential differs from the potential φ introduced in Section 1.4.1 but through-

out the cross-section of each good conductor or relevant semiconductor, φeq assumes

the same constant value as φ on its boundary. As the contrast charges reside in a ho-

mogeneous backgroundmedium, φeq satisfies Laplace’s equation everywhere and can

hence be expressed as:

φeq (r) = − 1

ǫ0

∫

Σc

ρeq (r′)G0 (r|r′) dc (r′) . (1.31)

The integration runs over all the boundaries c on which contrast charges were intro-

duced. The Green’s functionG0 satisfies

∇2
tG0 (r|r′) + (k2

0 − β2)G0 (r|r′) = δ (r − r
′) , (1.32)

with k0 the wavenumber of the background medium. The term −β2G0 (r|r′) stands

for the second order derivative with respect to z, and as long as the quasi-TM assump-

tion holds, it is negligible with respect to each of the transverse second order deriva-

tives in ∇2
tG0 (r|r′). As k2

0 has the same order of magnitude as β
2, it is neglected as

well and (1.32) reduces to

∇2
tG0 (r|r′) = δ (r − r

′) . (1.33)

The quasi-static Green’s function G0 is equal to (1/2π) ln |r − r
′| for free space. If

we consider a half-plane on top of a PEC ground, an image source term −δ (r − r
′′)

(with r
′′ the mirror image of r′ with respect to the PEC ground) is added to the r.h.s.

of (1.32) and (1.33), and G0 becomes (1/2π) ln (|r − r
′| / |r − r

′′|). For r on c in
(1.31) a surface integral equation for ρeq is obtained.

The relevant semiconductors can be subdivided into two groups, whether or not

they are attached to a signal conductor. The potential of those that touch a signal con-

ductor is equal to that of the signal conductor (i.e. zero for a semiconductor touching

a PEC reference conductor). The total charge on each of the signal conductors and

the total charge of the attached relevant semiconductors, is denoted as (q + qsc,A).

The charge and potential of the relevant semiconductors that stand free are written as
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qsc,F , resp. vsc,F . With this notation, (1.26) can be transformed into

vT · C̃ · v =
[

vT vT
sc,F

]

·
[

q + qsc,A

qsc,F

]

(1.34)

To obtain all the elements of the capacitance matrix, we one by one put φeq = 1 on

the boundary of a signal conductor and its touching constant surface potential semi-

conductors, as well as on the relevant semiconductors that are standing free, while

keeping φeq = 0 on all the other ones, each time solving (1.31). In this way the

extended capacitance matrix C̃ext, defined as

[

q + qsc,A

qsc,F

]

= C̃ext ·
[

v

vsc,F

]

(1.35)

is obtained. Once C̃ext is determined, the actual capacitance matrix C̃ can be retrieved

after some straigthforward matrix manipulations by eliminating vsc,F and qsc,F from

(1.35), based on the requirement that when a semiconductor stands free, its total

charge remains zero, and thus qsc,F = 0. However, fixing the boundary potentials

as explained above, does not suffice to solve (1.31). For this, additional relationships

between the potentials and the charges on the remaining boundaries are needed, more

specifically on the boundaries of the dielectrics and the semiconductors which behave

as lossy dielectrics. We focus our attention to such a single homogeneous semicon-

ductor with cross-section Si and boundary ci. In this case the original potential φ

in Si approximately satisfies ∇2
tφ = jωµ0σφ. The diffusion term is present if σ be-

comes significantly larger than ωǫ, even when not yet high enough for φ to become

constant on the boundary. In this case, as explained in section 1.4.1, the approxima-

tion et = −∇tφ (i.e., dropping the higher order contribution −jωat of the vector

potential) is still valid, as is the case for dielectrics. Let us now expand φ in terms of

the normalized Dirichlet eigenfunctions ξm of Si which themselves satisfy

∇2
t ξm(r) + k2

mξm(r) = 0 , r ∈ Si (1.36)

with ξm = 0 on the boundary ci of Si and with k
2
m the corresponding Dirichlet eigen-

values. It is easily derived that the normal derivative ∂φ
∂n can be expressed as

∂φ(r)

∂n
= − ∂

∂n

∑

∀m

ξm(r)

k2
m + jωµ0σ

∮

ci

φ(r′)
∂ξm(r′)

∂n
dc(r′) (1.37)

with r ∈ ci. For lossless dielectrics the term jωµ0σ is not present. Relationship

(1.37) between ∂φ
∂n and φ is a Dirichlet to Neumann boundary operator. Going back to

(1.30) and approximating en by − ∂φ
∂n , (1.30) and (1.37) yield a relationship between
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the contrast charge density and the potential on ci. Discretization of this relationship
3

and of (1.31) with the MoM yields the wanted charge distributions and the elements

of C̃ext.

Note that the integral equation (1.31) combines the equivalent potential φeq with

the contrast charge density. In the r.h.s. of (1.37), φ is therefore replaced by φeq. This

is allowed on all boundaries with good conductors (with constant potential φ = φeq

on the outer boundary), and on all boundaries with dielectrics (where φ = φeq as

well). On internal boundaries between two adjacent semiconductors that both exhibit

an important conductivity, φ is subject to diffusion, whereas φeq is not, and hence

φeq 6= φ. However, if the potential is not yet constant on the outer boundary, the

diffusion is still limited and the small difference between φ and φeq has very little

influence on the solution to the integral equation.

At this point we will not discuss the numerical method in further detail. It suffices

to mention that the relation between ρeq and φeq on the boundaries is discretized in an

analogousway as the differential surface admittance operatorY in [17], although here,
piecewise linear basis functions were used to discretize both quantities, whereas [17]

uses pulse functions.

1.5 The Inductance Problem

To solve the inductance problem, we will only need the longitudinal part of the con-

trast current, i.e. jc,z =
(

σ+jω(ǫ−ǫ0)
)

ez = (k2
0 −k2) ez/jωµ0 with ez the as yet

unknown longitudinal electric field and k the wavenumber of the considered material.

First, we will restrict the reasoning to a particular modem and afterwards extend the

result to an arbitrary superposition of modes. To distinguish between the single mode

problem and the general one, capital letters will be used for the modal problem. The

scalar vector potential Azm for the equivalent contrast current problem is

− jωAzm (r) =

∫∫

ΣSi

(

(

k2
0 − β2

m

)

−
(

k2 − β2
m

)

)

· Ezm (r′)G0 (r|r′) dS (r′) . (1.38)

3This discretization is not as straightforward as could be expected from [17]. A direct use of (1.37) in-

troduces important Gibbs phenomena over the total boundary ci, on which the Dirichlet expansion does not

converge since φci
6= 0, whereas ξci

≡ 0. Instead of (1.37), a slightly different expansion is used in prac-
tice, not based directly on the Dirichlet eigenfunctions of Si themselves, but on a well-chosen combination

of parallel-plate waveguide modes. This restricts the numerical inaccuracies to the corner points, where

they can be cancelled out by using a number of additional expansion functions. This is explained in more

detail in Chapter 3 for a rectangular cross-section, and in Chapter 4 for triangles, with a direct extension to

polygons in Appendix A.2.
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The integration runs over all the cross-sections Si of the different materials. The

longitudinal electric field Ezm satisfies the wave equation

∇2
tEzm +

(

k2 − β2
m

)

Ezm = 0 (1.39)

and can be written in terms of the potentials, as

Ezm (r) = jβmφeq,m (r) − jωAzm (r) , (1.40)

where φeq,m is the equivalent scalar potential for mode m and with φeq the same

equivalent potential as already introduced in Section 1.4.2. Judicious manipulations

of (1.38) and (1.40), invoking (1.32) and (1.39) in conjunction with Green’s theorem,

lead to

jβmφeq,m(r) = −
∫

Σcj

(

∂Ezm (r′)

∂n
G0 (r|r′) − Ezm (r′)

∂G0 (r|r′)

∂n

)

dc (r′) .

(1.41)

Next, we introduce the fictitious field Ez0m within each subregion Si, defined as a

solution to the homogeneous wave equation (i.e. without the contrast current source-

term) in the background medium, i.e.,

∇2
tEz0m +

(

k2
0 − β2

m

)

Ez0m = 0 (1.42)

and which takes the same valueEz0m = Ezm on the boundary and only on the bound-

ary ci of Si as the Ezm field we want to determine. This allows to write (1.41) for any

observation point r, again using (1.32), as

Ez0m (r) = jβmφeq,m (r) +

∫

Σcj

(

∂Ezm (r′)

∂n
− ∂Ez0m (r′)

∂n

)

G0 (r|r′) dc (r′) .

(1.43)

In the quasi-TM limit, the integration runs over all boundaries cj of conductors and

semiconductors. The dielectrics yield no contribution, because Ezm and Ez0m have

the same boundary value and satisfy Laplace’s equation, which amounts to neglecting

the dielectric displacement currents in (1.38) as compared to the conductors’ currents.

Physically, as introduced in [17], (1.43) means that the inductance problem can be de-

scribed in terms of equivalent so-called differential surface currents on each boundary

cj , given by

Jsm,j (r′) =
1

jωµ0

(

∂Ezm (r′)

∂n′
− ∂Ez0m (r′)

∂n′

)

, (1.44)
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with r
′ ∈ cj . It has also been shown in [17] that the following differential surface

admittance operator Y(r′, r′′) can be introduced

Jsm,j (r′) =

∮

cj

Yj (r′, r′′)Ezm,j (r′′) dc (r′′) , r
′ ∈ cj, (1.45)

expressing a relationship between the differential surface current on boundary cj and

the longitudinal electric field on that same boundary. Note that in the quasi-TM limit

the operator Y does not depend on βm as in this limit we approximate (k2 − β2
m)

in (1.39) by −jωµ0σ and neglect the term
(

k2
0 − β2

m

)

Ez0m in (1.42) with respect

to both terms in ∇2
tEz0m. Integrating Jsm,j over cj leads to an expression for the

longitudinal current Ij through the cross-section Sj

Ijm =

∮

cj

Jsm,j (r′) dc (r′) . (1.46)

Until now the reasoning was restricted to a particular mode, meaning that the signal

conductor potentials φeq take their respective modal values on each of the signal con-

ductors. To extend (1.43) to a general superposition of modes, we start from (1.13)

and consider an arbitrary superposition of modes corresponding to a set of voltages v

used to excite the signal conductors, to arrive at

L̃−1
∑

m

αmvm = L̃−1 v = jω
∑

m

αm
im

jβm
. (1.47)

The αm are modal amplitudes. If we now define the following quantities:

êz0 =
∑

m

αm
Ez0m

jβm
(1.48)

φeq =
∑

m

αmφeq,m (1.49)

îp =
∑

m

αm
im,p

jβm
(1.50)
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(1.45), (1.43) and (1.46) can be rewritten as

ĵs,j (r′) =

∮

cj

Yj (r′, r′′) êz0 (r′′) dc (r′′) (1.51)

êz0 (r) = φeq (r) + jωµ0

∮

Σcj

ĵs,j (r′)G0 (r|r′) dc (r′) (1.52)

Îj =

∮

cj

ĵs,j dc (1.53)

We now turn back to (1.47) and put signal conductor n on potential vn with all other

signal conductors on zero potential, leading to

[

L̃
−1

]

pn
=
jω

vn
îp. (1.54)

To obtain the wanted elements of the inverse of the inductance matrix, the knowledge

of the weighted circuit currents îp suffices. In Section 1.4, these circuit currents (1.28)

were found as a suitable combination of the currents In running through the signal

conductors and those, Isc,p, running through the semiconductors. From (1.51-1.53)

the various currents can be determined by solving the integral equation which follows

directly from (1.52) by putting the observation point r on the boundary of one of the

conductors or semiconductors (and on which êz0 = êz). For a correct solution, it

is important not only to take into account those semiconductors that behave as good

conductors and whether or not contribute to the circuit currents, but also those for

which σ is significant, even though φeq is not constant yet. The required value of φeq

can be found as a side result from the solution of the capacitance problem. Integral

equation (1.52) is of the same form as the one obtained in [17] and can be solved using

the MoM, together with the MoM discretization of (1.51) and the explicit calculation

of Yj again using the Dirichlet to Neumann operator. Knowledge of the βm is not

necessary. Note however that once the capacitance and inductance matrix have been

determined, the β2
m/ω

2-values can be obtained as the eigenvalues of L̃C̃.

1.6 Numerical Results

To validate the proposed theoretical model for the semiconductors’ behavior in in-

terconnect structures, a number of single-conductor lines are investigated. A more

complicated example for a multi-conductor line structure is given as well, model-

ing four coupled differential pair transmission lines in a realistic high-frequency chip

technology.
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Figure 1.2: Effective relative permittivity ǫr,eff and attenuation factor (dB/m) for the fundamen-
tal mode of the shown MIS microstrip line at 1GHz, as a function of the loss tangent σ1/ωǫ1
of the lower substrate. w = 600µm, h1 = 500µm, h2 = 135µm, and ǫ1 = ǫ2 = 9.7 ǫ0. The
vertical line indicates where σ1 = 450ωǫ1.

1.6.1 MIS Microstrip Line

As a first example, consider the open MIS microstrip line, shown on the inset of

Fig. 1.2. The line consists of a h1 = 500µm thick lossy substrate with conduc-

tivity σ1, separated from a thin signal conductor by a lossless dielectric layer with

thickness h2 = 135µm. All materials are non-magnetic (as will be the case in all

the examples). Simulations were performed at 1 GHz, for increasing values of σ1,

such that the fundamental mode evolves from a dielectric mode, over the slow-wave

range, to a skin effect mode. In [1], an infinitely thin and perfect electric conducting

(PEC) signal line was used. Our simulation of the PEC line (full line in Fig. 1.2)

yields identical results for the attenuation factor4 α. Yet, a small difference in the

4 For completeness, a number of basic definitions are given here, that are not always explicitly written

in the text itself. In the case of a single line along the z-axis, the fields behave as e−jβz+jωt, or, for a

multiconductor structure, each fundamental mode with mode number βm behaves according to

e−jβmz+jωt =
`

eβI
mz

´

e
−jβR

m

`

z− ω

βR
m

t
´

,

with βm = βR
m + jβI

m. In this expression, we can identify the modal speed or phase velocity, given by

vm = ω/βR
m, and the attenuation factor

`

eβI
mz

´

, in which βI
m ≤ 0 if βR

m > 0, for a wave travelling along
+z. In this thesis, the attenuation factor is mostly shown in decibels per unit of length (dB/m), written as

α = (20/z)
`

− log10 eβI
mz

´

= −20 βI
m log10 e

or multiplied with a factor 0.001 when the scale is (dB/mm). The modal slow wave factor (SWF)
and effective relative permittivity ǫr,eff,m are defined in relation to the modal phase velocity (with

c = 299 792 458m/s the speed of light in vacuum) as vm = c/SWF = c/
√

ǫr,eff,m such that the
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Figure 1.3: ǫr,eff at 10MHz and 1 GHz for (a) the configuration as in Fig. 1.2 (h1 = 500µm,
h2 = 135µm, w = 600µm), and (b) a modified configuration with smaller conductor (h1 =
500µm, h2 = 13.5µm, w = 60µm)

effective relative permittivity ǫr,eff is noticeable because the results shown here were

obtained by leaving away the top side of the box surrounding the structure in [1], re-

sulting in a small shift of the inductance and hence the observed difference in ǫr,eff.

The difference is very small though, and the large box described in [1] allows a good

approximation of the open line structure. Simulating the signal line as a copper con-

ductor (σCu = 58 MS/m) of the same width and with finite thickness (w = 600µm,

t = 20µm) only slightly affects the results, as shown in Fig. 1.2 (dash-dot lines).

The transition between the regions in which a different semiconductor model is

applied, is for all examples chosen to be σ1 = 450ωǫ1. For lower values of σ1, the

substrate is treated as a lossy dielectric, and for higher σ1 as a conductor with constant

surface potential. As can be seen from Fig. 1.2, our approach leads to correct and

continuous results, as predicted by our theory.

SWF is actually an effective refraction index (because only non-magnetic materials are considered). We

finally find, with k0 the propagation constant of free space given by k0 = ω
√

ǫ0µ0 = ω/c, that

SWF =
βR

m

k0
and ǫr,eff,m =

„

βR
m

k0

«2

.
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Figure 1.4: MIS Coplanar Waveguide structure (Example 1.6.2)

As an illustration of the frequency-dependency, the same configuration was sim-

ulated both for the PEC and the copper signal line, at the frequencies 10 MHz and

1 GH. Fig. 1.3 (a) shows that the resulting ǫr,eff-values are very similar, be it that at

10 MHz the skin effect mode is never reached (current crowding would only occur for

a loss tangent, higher than 107). In both cases, there is virtually no difference in ǫr,eff
between the copper and the PEC conductor. However, now consider an analogous

configuration, but with a smaller conductor, closer to the substrate (h2 = 13.5µm,

w = 60µm, and t = 2µm for the copper strip). The thickness of the lower substrate

and the material parameters remain unchanged. Fig. 1.3 (b) shows that at 1 GHz, the

finite conductivity of the line still has no influence on the propagation constant. The

main difference between both configurations at 1 GHz, is the different value of ǫr,eff in

the slow-wave range of the fundamental mode. In Fig. 1.3 (b), ǫr,eff at 1 GHz is higher

than in Fig. 1.3 (a), because the lower substrate has a higher internal inductance (as it

was not scaled together with the line), whereas the capacitance remains unchanged as

soon as σ1 > ωǫ1. At 10 MHz, ǫr,eff is much larger in Fig. 1.3 (b) than in Fig. 1.3 (a),

although only for the copper conductor. By decreasing the dimensions of the line, the

resistance R increases with respect to the inductance L and the point where R ≈ ωL

shifts towards higher frequencies. At 10 MHz the line in Fig. 1.3 (b) operates in the

so-called RC-range5, where R > ωL.

1.6.2 MIS Coplanar Waveguide

Another single line structure, used to verify the validity of our method, is the MIS

CPW presented in Fig. 1.4. This structure has previously been analyzed in [19] with

the full-wave Method of Lines (MoL) technique and in [1] with a quasi-TM approach

(MoM/MoL). The resulting slow-wave factor (SWF) and the attenuation, obtained

5One has to be careful not to draw any wrong conclusions from the presented results in the RC-range.

In this frequency range, ǫr,eff ∝ 1/ω, but this does not mean the line behaves dispersively. The reason for
this is, that for these frequencies the line rather acts as a lumped RC circuit, or an attenuator, instead of as

a transmission line. In the RC-range, the imaginary part βI of the mode number β has the same order of
magnitude as the real part βR. A phase difference of, e.g., π/2 would imply a power attenuation with a
factor e−π ≈ −0.043. In a more realistic situation, such a line with an acceptable loss would be much
smaller than a quarter wavelength. Its phase delay would therefore be negligible in the RC-range (despite

its strongly frequency-dependent effective permittivity).
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Figure 1.5: Slow-wave factor and attenuation for the fundamental mode in the MIS CPW of

Fig. 1.4, with dimensions h1 = 480, h2 = 1, t = 0.8, s = 5, w = 10, all in micrometers. Top
conductors: σ = 27 MS/m. Results are shown for a very weakly doped (ρ = 1kΩcm) and a
weakly doped (ρ = 1Ωcm) substrate.

for a very weakly and a weakly doped substrate (ρ = 1 kΩcm, resp. ρ = 1 Ωcm),

corresponding to a dielectric and a slow-wave fundamental mode, are presented in

Fig. 1.5 together with the results from [19] and [1]. For the heavily doped case, the

characteristic impedance is shown in Fig. 1.6 and compared with measured values

from [10], with a satisfying match.

1.6.3 Multi-Conductor Line Structure

In the final example of Fig. 1.7, a transmission line system of 8 coupled lines is ana-

lyzed. The dimensions are based on a currently used semiconductor technology. Four

identical pairs of conductors (c1 to c8) and a reference conductor (cR), all with con-

ductivity σsig = 40 MS/m, are embedded in a dielectric layer above a thick semicon-

ducting substrate, on top of a PEC plane. The substrate conductivity σsub = 2 S/m,

unless indicated differently (as for Fig. 1.9 and 1.10). Locally (underneath c1 and

c2), the substrate has been heavily doped (σdop = 0.03 MS/m). Permittivities are

ǫdiel = 4ǫ0 and ǫsub = 12ǫ0. The dimensions, in micrometers, are indicated in the

cross-section (not shown in proportion). The structure is enclosed between two PEC

‘mirror’ walls at the left and right side, in order to imitate a wide slab (as was done

in [1] as well).

In Fig. 1.8, the modal voltages on each signal conductor are presented for the

8 fundamental modes, at a frequency of 10 GHz and for a substrate conductivity
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Figure 1.7: Cross-section of the multi-conductor line structure of Example 1.6.3. All indicated

dimensions are in micrometers.

σsub = 2 S/m. For a clear graphical presentation of the modes, each normalized

modal voltage V is presented with a modified amplitude V0 = |V | · sign
(

Re(V )
)

and

a phase φ, such that V = V0 e
−jφ. The modes fall apart into two groups: the modes

(m1-m4), in which both conductors of each pair have more or less the same excitation,

and those (m5-m8), with an opposite excitation of both conductors of each pair. In the

next paragraphs, they are resp. called the even and the odd modes.

The behavior of the SWF and attenuation as a function of the substrate loss factor

σsub/ωǫsub is shown in Fig. 1.9. There is a large difference in the behavior of the
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Figure 1.9: Slow-wave factor (a) and attenuation factor (b) for each of the fundamental modes

of the multi-conductor structure of Fig. 1.7 at 10GHz, as a function of the substrate loss tangent
(ranging from 10−3 to 107). The vertical dashed lines indicate where σsub = 2 S/m, i.e. for
which the modal voltages are shown in Fig. 1.8.

even and the odd modes, which can be explained as follows. Each pair can roughly

be approximated as a symmetric line pair in its own respect. For such a line, the two

fundamental modes βeven and βodd are found from

β2
even = −

(

jω(Cs − |Cm|) + (Gs +Gm)
)

·
(

jω(Ls + Lm) + (Rs +Rm)
)

β2
odd = −

(

jω(Cs + |Cm|) + (Gs −Gm)
)

·
(

jω(Ls − Lm) + (Rs −Rm)
)

(1.55)

in which the indices s andm denote the diagonal, resp. the off-diagonal elements from

the (2× 2) circuit matrices associated with each line pair. As an illustration, Fig. 1.10

shows the relevant elements of the complex matrices C̃ and L̃, associated with the

conductor pair c3-c4. The elements C33 and C44 correspond to Cs from (1.55) (the

small difference between them due to the actual non-symmetry of the configuration),

whereas C34 corresponds to Cm. From Fig. 1.10 (a), it becomes clear that the factor

(jωCs +Gs) in (1.55) is dominated by the capacitance term and the numerical results
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Figure 1.10: Elements of complex capacitance matrix C̃ and inductance matrix L̃ for the struc-

ture of Fig. 1.7 at 10GHz, as a function of the substrate loss factor. (a) Entries of Re(C̃) = C,

compared to −Im(C̃) = G/ω (scaled by a factor 10 for clearness), and (b) elements of
Re(L̃) = L, compared to −Im(L̃) = R/ω.

confirm this is also the case for the other line pairs. For all line pairs, bothCs (positive)

andCm (negative) are influenced in the same way by the charge on the substrate’s sur-

face. As soon as the loss tangent becomes larger than about 1, an increasing σsub leads

to a higher Cs, whereas |Cm| decreases. For the odd mode, depending on Cs + |Cm|,
the influence of σsub is cancelled out, whereas it is reinforced for the even mode. This

explains the flat behavior of the SWF in Fig. 1.9 (a) around σsub/ωǫsub ≈ 1 for the odd

modes, and the increase for the even modes. This effect is not very pronounced for

modem4, although an ‘even’ mode. This is due to the reference conductor, shielding

c5 and c6 from the substrate. The reason why m3 has the highest and m1 the lowest

SWF from the even modes, is readily explained as well. The influence of the refer-

ence conductor and the doped part (σdop) in the substrate lead to higher capacitance

elements associated with the conductors on the left (c1, c2, c5 and c6, strongly excited

in mode m3) than for those on the right (excited in mode m1). At higher values of

σsub, when the magnetic field can no longer fully penetrate the substrate, an analo-

gous argumentation based on the inductance and resistance coefficients, explains the

different σsub-dependence of the odd and the even modes.



38 A QUASI-TM MULTI-CONDUCTOR TRANSMISSION LINE MODEL

m1
m2

m3 m4

m5

m6

m7
m8

2

10

15

5

1 10 100

frequency (GHz)

slow-wave factor

Figure 1.11: Slow-wave factor as a function of frequency for the fundamental modes m1 to

m8 of Fig. 1.7 (with σsub = 2S/m). The dotted line denotes the frequency at which the modal
voltages are shown in Fig. 1.3.

Fig. 1.9 also shows that the overall odd mode SWF is higher than for the even

modes. As both conductors of each pair are close to one another, |Cm| is of the
same order of magnitude as Cs and (Cs + |Cm|) is hence considerably larger than
(Cs − |Cm|). Furthermore, |jωLs + Rs| is considerably higher than |jωLm + Rm|,
due to the large line resistance Rm, see Fig. 1.10 (b). Going back to (1.55), the above

considerations immediately lead to the observed difference in magnitude of the SWF

of the even and odd modes.

Similar reasonings can be put forward to explain the attenuation factors. The main

effect is here that the odd modal currents, opposite in both conductors of each pair,

tend to repel each other, and hence flow through a smaller effective area of the con-

ductors than the currents of the even modes, resulting in a higher attenuation.

The conductance coefficients G33, G34 and G44 shown on Fig. 1.10 (a), clearly

demonstrate the semiconductor’s behavior. For a very low conductivity σsub, et must

be taken into account but the transverse currents σsubet are still negligible. When σsub
increases, the transverse currents and the G-values also increase. However, as soon

as the loss tangent becomes considerably higher than 1, charge relaxation reduces et.

This effect outweighs the increase in σsub and hence the G-values decrease again and

in the end become negligible as soon as the substrate’s surface potential has become

constant.

Finally, the frequency-dependency of the SWF is shown in Fig. 1.11, for a sub-

strate conductivity σsub = 2 S/m. The transition from the RC- to the LC-range takes

place around 20 GHz. This frequency is quite high because the conductors’ cross-
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sections are small, resulting in large R-values.

1.7 Conclusions

A new multiconductor transmission line model has been developed, valid for general

2-D lossy line configurations within the quasi-TM frequency range.

A careful theoretical analysis proves that, within the quasi-TM limit, semicon-

ductors can be accurately modeled by only considering two different regimes as a

function of their loss factor. For highly doped semiconductors the boundary potential

becomes constant, and their longitudinal current is taken into account. Lowly doped

semiconductors can be treated as lossy dielectrics. In the quasi-TM limit these two

regimes suffice to obtain accurate and continuous results as a function of conductivity

and frequency.

We have also shown how an existing quasi-TM model for a single line can be

extended to coupled lines. For this a reciprocity based approach as compared to a

power based one proved to be necessary, leading to a non-conventional definition of

the circuit modal currents (as compared to classical quasi-TEM models in the sole

presence of low loss dielectrics). To obtain the RLGC circuit matrices, solving two

boundary integral equations (one for the complex capacitance problem and one for

the complex inductance problem) combined with the Dirichlet to Neumann boundary

operator for the different materials, turned out to be sufficient.

A number of single conductor lines were simulated, showing excellent agreement

with results already available in literature and the possibilities of the method were

further explored by considering an 8-line multiconductor example of an on-chip con-

figuration.



40 A QUASI-TM MULTI-CONDUCTOR TRANSMISSION LINE MODEL



Bibliography

[1] G. Plaza, R. Marques, and F. Medina, “Quasi-TMMoL/MoM approach for com-

puting the transmission-line parameters of lossy lines,” IEEE Trans. Microw.

Theory Tech., vol. 54, no. 1, pp. 198–209, Jan. 2006.

[2] E. Groteluschen, L. S. Dutta, and S. Zaage, “Quasi-analytical analysis of the

broadband properties of multiconductor transmission lines on semiconducting

substrates,” IEEE Trans. Compon., Packag., Manuf. Technol. B, vol. 17, no. 3,

pp. 376–382, Aug. 1994.

[3] H. Ymeri, B. Nauwelaers, K. Maex, and D. De Roest, “Influence of a lossy sili-

con substrate on conductance and capacitance of coupled interconnects,” Journal

of Microwaves and Optoelectronics, vol. 3, no. 3, pp. 49–53, Dec. 2003.

[4] U. Arz, H. Grabinski, and D. F. Williams, “Influence of the substrate resistivity

on the broadband propagation characteristics of silicon transmission lines,” in

ARFTG Conference Digest-Spring, 54th, vol. 36, Dec. 1999, pp. 65–70.

[5] G. Manetas, V. N. Kourkoulos, and A. C. Cangellaris, “Investigation on the fre-

quency range of validity of electroquasistatic RC models for semiconductor sub-

strate coupling modeling,” IEEE Trans. Electromagn. Compat., vol. 49, no. 3,

pp. 577–584, Aug. 2007.

[6] F. Bertazzi, G. Ghione, andM. Goano, “Efficient quasi-tem frequency-dependent

analysis of lossy multiconductor lines through a fast reduced-order fem model,”

IEEE Trans. Microw. Theory Tech., vol. 51, no. 9, pp. 2029–2035, Sep. 2003.

[7] F. Bertazzi, F. Cappelluti, S. Guerrieri, F. Bonani, and G. Ghione, “Self-

consistent coupled carrier transport full-wave em analysis of semiconductor

traveling-wave devices,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp.

1611–1618, Jun. 2006.

[8] J. Aguilera, R. Marques, and M. Horno, “Improved quasi-static spectral domain

analysis of microstrip lines on high-conductivity insulator-semiconductor sub-

strates,” IEEE Microw. Guided Wave Lett., vol. 9, no. 2, pp. 57–59, Feb. 1999.

[9] J. J. Kucera and R. J. Gutmann, “Effect of finite metallization and inhomoge-

neous dopings on slow-wave-mode propagation,” IEEE Trans. Microw. Theory

Tech., vol. 45, no. 10, pp. 1807–1810, Oct. 1997.



42 BIBLIOGRAPHY

[10] Y. R. Kwon, V. M. Hietala, and K. S. Champlin, “Quasi-TEM analysis of ‘slow-

wave’ mode propagation on coplanar microstructure MIS transmission lines,”

IEEE Trans. Microw. Theory Tech., vol. 35, no. 6, pp. 545–551, Jun. 1987.

[11] F. Olyslager and D. De Zutter, “Rigorous boundary integral equation solution for

general isotropic and uniaxial anisotropic dielectric waveguides in multilayered

media including losses, gain and leakage,” IEEE Trans. Microw. Theory Tech.,

vol. 41, no. 8, pp. 1385–1392, Aug. 1993.

[12] F. Olyslager, Electromagnetic Waveguides and Transmission Lines. Oxford,

U.K.: Oxford University Press Inc., 1999.

[13] F. Olyslager, D. de Zutter, and A. T. de Hoop, “New reciprocal circuit model for

lossy waveguide structures based on the orthogonality of the eigenmodes,” IEEE

Trans. Microw. Theory Tech., vol. 42, no. 12, pp. 2261–2269, Dec. 1994.

[14] L. Wiemer and R. H. Jansen, “Reciprocity related definition of strip character-

istic impedance of multiconductor hybrid-mode transmission lines,” Microwave

Optical Tech. Lett., vol. 1, no. 1, pp. 22–25, Mar. 1988.

[15] G. Cano, F. Medina, and M. Horno, “Efficient spectral domain analysis of gen-

eralized multistrip lines in stratified media including thin, anisotropic, and lossy

substrates,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 2, pp. 217–227, Feb.

1992.

[16] F. Mesa, G. Cano, F. Medina, R. Marques, and M. Horno, “On the quasi-tem and

full-wave approaches applied to coplanar multistrip on lossy dielectric layered

media,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 3, pp. 524–531, Mar.

1992.

[17] D. De Zutter and L. Knockaert, “Skin effect modeling based on a differential

surface admittance operator,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 8,

pp. 2526–2538, Aug. 2005.

[18] D. De Zutter, H. Rogier, L. Knockaert, and J. Sercu, “Surface current modelling

of the skin effect for on-chip interconnections,” IEEE Trans. Compon., Packag.,

Manuf. Technol. B, vol. 30, no. 2, pp. 342–349, May 2007.

[19] K.Wu and R. Vahldieck, “Hybrid-mode analysis of homogeneously and inhomo-

geneously doped low-loss slow-wave coplanar transmission lines,” IEEE Trans.

Microw. Theory Tech., vol. 39, no. 8, pp. 1348–1360, Aug. 1991.



CHAPTER2

Composite Conductors

Thomas Demeester and Daniël De Zutter
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Accurately modeling interconnect structures is an important issue in high-

frequency chip design. Conductors have a finite thickness and conductivity,

and are often composed of different metals. In a first part of this chapter, it

is shown that the Dirichlet to Neumann technique can be used to model the

inductive and resistive behavior of such structures, up to high frequencies at

which the skin effect is well-developed. It is furthermore demonstrated how the

method can be used for the accurate and fast calculation of their longitudinal

current distribution.

The second part of this chapter presents a new method to calculate the inter-

nal inductance and resistance per unit of length for the considered composite

conductors, also based on the Dirichlet to Neumann operator. The method is

formulated in such a way, that the physical meaning of the internal impedance

is clarified, as obtained by disregarding the external magnetic field. A compar-

ison is made with the definitions known in literature to determine the internal

impedance. In a number of numerical examples, the differences between those

definitions and ours are elucidated, and some physical properties of the inter-

nal impedance are investigated.
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2.1 Modeling the Broadband Inductive and Resistive

Behavior of Composite Conductors

2.1.1 Introduction

Due to the continually increasing clock rates, it becomes necessary to take into ac-

count the wave character of on-chip interconnect structures, as is already the case for

high-frequency printed circuit board design. Predicting signal delay, attenuation, and

dispersion on these interconnects demands the accurate determination of the circuit

parameters, i.e. capacitance, inductance, conductance and resistance per unit length

(p.u.l.). It is particularly important to take into account the finite thickness and con-

ductivity of signal conductors over a broad frequency range, see e.g. [1,2]. Recent de-

velopments in chip technologies involve the use of composite conductors, composed

of metals with a different conductivity [3]. In this paper, the resistance-inductance

(RL) problem for such composite conductors is treated (Section 2.1.2). The approach

adopted in [1] is extended for composite conductors, and leads to the derivation of an

expression for the conductors’ current distribution (Section 2.1.3). In Section 2.1.4,

the method is illustrated with some examples of coated and layered conductors.

Commercial EM codes are not well suited to accurately model broadband skin

effect in thick layered conductors. This is either due to the large number of discretisa-

tions needed in volume methods or to the non-exact boundary impedance conditions

imposed at the conductors’ surface.

2.1.2 Inductance and Resistance Model

Fig. 2.1 shows the 2-D cross-section of the considered configuration. It consists of

a single non-magnetic composite conductor. The conductor’s cross-section S (with

boundary c) is composed of N conductors with cross-section Si (with boundary ci)

and conductivity σi (i = 1, . . . ,N). The fundamental mode propagating along the line

has an e−jβz+jωt field dependence.

The considered frequency range is limited by the requirement that the relevant

transverse diameter of the structure remains much smaller than the modal wavelength

2π/Re(β). This leads to a quasi-TM description (see e.g. [4]) of the problem and in

that case the non-magnetic dielectric background in which the conductor is embed-

ded does not influence the solution of the RL-problem. Semiconducting media are

excluded as they require a much more complex analysis1.

For conciseness, the theory below is restricted to the single line case. Following

the analysis in [1], this theory can be readily extended to the multiple line case as

illustrated by the differential line example in Section 2.1.4.

1In order to include semiconductors, the theory as explained in Chapter 1 should be applied. The

current paper however studies the properties of layered and coated conductors as opposed to homogeneous

conductors, and hence the influence of the substrate is not immediately relevant here.
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Figure 2.1: Composite conductor above a PEC ground plane.

The RL-behavior of the line can be described by the transmission line equation

jβ v = (R+ jωL) i, (2.1)

in which the circuit voltage v is defined as the constant value of the electric potential

φ on c and the circuit current i is the total longitudinal current flowing through the

composite conductor. R and L are themselves frequency-dependent. In the absence

of a PEC plane, at least two conductors must be present, one of which serves as the

zero potential reference.

In the quasi-TM limit, the wave equation for Ez can be simplified to the diffusion

equation inside and to Laplace’s equation outside the conductor

∇2
tEz (r) =

{

jωµ0σiEz (r) r ∈ Si (2.2a)

0 r 6∈ S. (2.2b)

Each cross-section Si of the conductor is now replaced by its corresponding contrast

current σiEz , neglecting dielectric displacement currents. The resulting configura-

tion is that of a set of unknown currents σiEz residing in free space. The fields in

this equivalent configuration remain unaffected, but the electric potential φ inside the

conductor now satisfies Laplace’s equation instead of the diffusion equation and as-

sumes the constant value v throughout S. Decomposing Ez on S in terms of the

electric scalar potential and the z-component of the magnetic vector potential yields,

for r ∈ S

Ez (r) = jβ v + jωµ0

∫∫

ΣSi

G0(r|r′)σiEz (r′) dS′, (2.3)

in whichG0(r|r′) = (1/2π) ln (|r − r
′|/|r − r

′′|) is the quasi-static half-spaceGreen’s
function with r

′ = (x′ux + y′uy) and r
′′ = (x′ux − y′uy). G0 satisfies

∇2
tG0(r|r′) = δ (r − r

′) − δ (r − r
′′) · (2.4)

For each Si, we now introduce a fictitious field Ei which satisfies∇2
tEi = 0 through-

out Si and is equal to Ez on the boundary ci of Si. Substituting Ez from (2.2a) into
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(2.3), using (2.4) and Green’s theorem, leads to

Ei (r)

jβ
= v + jωµ0

∮

Σci

G0(r|r′)

[

Js (r′)

jβ

]

dc′, r ∈ Si (2.5)

in which the equivalent surface current density Js on each boundary ci is defined by

Js (r′) =
1

jωµ0

(∂Ez (r′)

∂n′
− ∂Ei (r′)

∂n′

)

, r
′ ∈ ci. (2.6)

Moreover, integrating (2.6) over ci easily leads to ii =
∮

ci
Js dc, i.e. the total surface

current on ci is identical to the bulk current flowing through Si. Equation (2.5) is eval-

uated on all boundaries ci, whereEi = Ez , and, together with (2.6), forms an integral

equation that can be solved with the Method of Moments (MoM), leading for any

voltage excitation v to the corresponding value of
[

Js/jβ
]

on all boundaries ci. The

Dirichlet to Neumann technique as introduced in [1], is used to discretize (2.6). From

(2.1) and the resulting
[

Js/jβ
]

, the resistance and inductance p.u.l. are determined

by

(R+ jωL)
−1

=
(i/jβ)

v
=

1

v

∮

Σci

(

Js

jβ

)

dc . (2.7)

In order to determine β =
√

−jωC (jωL+R), we still need the capacitance C.

Its value can easily be determined by solving, e.g., again with the MoM, a classical

potential problem∇2
tφ = 0 everywhere, with the boundary c at the constant potential

v. Of course, here the dielectric properties of the (layered) background medium must

be taken into account.

2.1.3 Determination of the Current Density

To determine the complete current distribution inside the composite conductor we start

from

∇2
t

(

Ez (r) − Ei (r)
)

= jωµ0σiEz (r) , r ∈ Si. (2.8)

As (Ez − Ei) is zero on the complete boundary ci of Si, it is allowed to expand that

quantity in the Dirichlet eigenfunctions ξm,i of Si, such that

Ez(r) = Ei(r) +
∑

∀m

cm,i ξm,i(r), r ∈ Si, (2.9)

with coefficients cm,i determined by

cm,i =
jωµ0σi

k2
m,i

(

k2
m,i + jωµ0σi

)

∮

ci

Ei(r
′)
∂ξm,i(r

′)

∂n′
dc′, (2.10)
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Figure 2.2: Symmetrical pair with layered conductors (copper/chromium/copper), with resis-

tivities ρCu = 1.7µΩcm, and ρCr = 12.9µΩcm. All dimensions are in micrometers.

in which k2
m,i is the eigenvalue corresponding to the Dirichlet eigenfunction ξm,i, for

which

∇2
t ξm,i(r) + k2

m,iξm,i(r) = 0 , r ∈ Si. (2.11)

The fictitious field Ei follows from (2.5), and combined with (2.9) and (2.10), the

internal longitudinal electric field Ez and hence the current density can be calculated.

2.1.4 Numerical Results

Layered Conductors

Consider the differential microstrip pair from Fig. 2.2, in which the copper signal

lines each have a horizontal chromium middle layer with a lower conductivity. In

Fig. 2.3, the modal behavior of this configuration (‘Cu - Cr - Cu’) is compared with

the case with homogeneous copper conductors (‘homog. Cu’). The mode numbers β

are found from the eigenvalues β2 of −jωC̃ (R + jωL) (C being the capacitance, R

the resistance, and L the inductance matrix). The shown effective relative permittivity

ǫreff
and attenuation factor α are defined by β = k0

√
ǫreff

− jα, with k0 the free space

wave number.

For the lower frequencies (the so-called RC-range), ǫreff
and α are slightly higher

for the layered conductors, due to the higher DC-resistance. At skin-effect frequen-

cies, ǫreff
is independent of the chromium layer, and the same conclusion can be drawn

for the inductance matrix. This is not surprising, as there is no more relevant internal

inductance. The difference in attenuation between both configurations is smaller than

in the RC-range. This is explained by the lower chromium/copper ratio of the currents

flowing near the surface. The circuit parameters for this structure are presented in [5].

In Fig. 2.4, theEz field for a frequency 100 GHz is shown on different depths at the

right side of the left conductor (left conductor kept at zero potential, right conductor at

1V). The field decays exponentially toward the inside of the conductor, but penetrates

deeper into the chromium layer than into the copper.
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Coated Conductor

As a second example, the coated conductor shown in Fig. 2.5 is modeled. The circuit

inductance and resistance p.u.l. presented in Fig. 2.6 show that the RL-behavior of

the coated conductor is quite different from that of a homogeneous copper conductor

with the same dimensions. For skin-effect frequencies, the resistance increases more

rapidly for the coated conductor, given that a gradually larger part of the current flows

within the less conducting coating. A better approximation for the actual resistance is

obtained by a homogeneous conductor with a resistivity ρav = 2.06µΩcm, found as

the weighted average of ρCu and ρCr such that the same DC-resistance as the coated

conductor is obtained.

The configuration of Fig. 2.5 was taken from [6], in which a substitution of the
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composite conductor by a homogeneous conductor with an unknown effective resis-

tivity ρeff is proposed. With the developed techniques it is now possible to actually

calculate ρeff(f). Fig. 2.7 shows this effective value as a function of frequency nor-

malized on ρCu. For low frequencies ρeff coincides with ρav as defined above. The

difference between ρeff and ρav at higher frequencies clearly illustrates the effect of

the coating. The DC-value ρav is a good approximation for ρeff(f), up to the fre-

quencies at which the skindepth
√

ρav/πµ0f becomes comparable with the coating

thickness, which is far beyond the relevant frequencies in current chip technologies.

2.1.5 Conclusions

The Dirichlet to Neumann technique is perfectly suited for the description of the re-

sistive and inductive behavior of multi-conductor transmission line systems with com-

posite conductors. Additionally, the technique allows an elegant and accurate calcula-

tion of the current profile in the conductors, up to high frequencies.
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2.2 Internal Impedance of Composite Conductors

with Arbitrary Cross Section

2.2.1 Introduction

In the past, many different techniques were developed to predict the high-frequency

behavior of conductors, both on printed circuit boards (PCB) and, more recently,

within very-large-scale-integration (VLSI) circuits on chip. Due to the increase in

operating frequencies, it is no longer possible to model interconnects on PCB’s as

lossless perfect electric conductors (PEC) only, or to neglect the on chip wave phe-

nomena by only taking resistance and capacitance per unit of length (p.u.l.) into ac-

count. Consequently, an accurate description of the inductive and resistive behavior of

interconnect conductors is needed. The p.u.l. internal impedanceZin of a conductor is

a widely used parameter for this purpose, see e.g. [7], or, for an overview of available

literature, the introduction in [8]. Zin describes the behavior of a conductor, disregard-

ing the influence of the external magnetic field. Internal resistance and inductance can

be calculated from the Joule losses, respectively, the magnetic energy density within

the conductor. This can be done either by means of a volume discretization of the

conductor as in [8], or, by using a surface discretization as used in [9] to calculate the

circuit resistance and inductance.

Some aspects involving the difference between the real and the imaginary part of

Zin for rectangular conductors at skin-effect frequencies, and the influence on Zin of

the shape of the conductors and in particular its corners, remained a topic for discus-

sion (see [8, 10, 11]), and will be further treated in the examples in this paper. More

recently in [12], the Thévenin theorem applied to a small section ∆z of a conduc-

tor extending along the z-direction allowed to derive an expression for the internal

impedance by relating the voltage drop over this section to the longitudinal current

through that section. An exact expression for Zin in a rectangular conductor was de-

rived, thus settling the discussion.

In Section 2.2.2, the internal impedance concept is extended to inhomogeneous

conductors with arbitrary cross-sectional geometry. An expression for Zin, valid in

the quasi-transverse-magnetic (quasi-TM) frequency range, is derived directly from

the surface admittance operator [1]. The result for the homogeneous rectangular con-

ductor case is identical to the result from [12]. A comparison with the definition of

Zin from [8] is made, as it in fact appears to be different from the one used in [12].

It is also shown how the internal impedance as defined in [8] can be calculated from

the boundary value of the longitudinal electric field, in conjunction with the Dirichlet

to Neumann operator. Some numerical examples are given in Section 2.2.3, mainly

focussing on the differences between several definitions of Zin, and on the use of Zin

vs. a direct calculation of the circuit parameters. Finally, section 2.2.4 formulates

some conclusions.
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Figure 2.8: General conductor, for which the internal impedance is determined.

2.2.2 Internal Impedance of an Inhomogeneous Conductor

General Derivation

Fig. 2.8 shows the two-dimensional cross section of the nonmagnetic conductors for

which the internal impedance will be determined. Within the conductor, it is assumed

that σ(r) ≫ ωǫ0 (with r = xux + yuy), such that the electric potential φ is constant

on the boundary c of the transverse conductor’s cross section S. By definition, this

constant value is taken to be the line voltage V in the equivalent transmission line

model. The considered frequency validity range is restricted by the quasi-TM condi-

tions. These quasi-TM conditions on the one hand imply that |ht| ≫ |hz| outside the
conductors, such that et = −∇tφ, using index t to denote the transverse (x, y)-plane.

On the other hand, the relevant transverse dimensions are much smaller than the longi-

tudinal wavelength, such that the second order z-derivative in the general wave equa-

tion can be neglected with respect to the transverse second order derivatives. Within

the conductor, the field quantities therefore satisfy the diffusion equation, which for

ez becomes (with an e
jωt time dependence of the fields)

∇2
t ez(r) = jωµ0σ(r) ez(r), r ∈ S. (2.12)

It is assumed that the conductivity σ(r) is a piecewise continuous function of r. The

total longitudinal current I through S is written as

I =

∫∫

S

σ(r′)ez(r
′) dS(r′) (2.13)

=

∮

c

1

jωµ0

∂ez(r
′)

∂n′
dc(r′) (2.14)

=

∮

c

1

jωµ0

(∂ez(r
′)

∂n′
− ∂ez0(r

′)

∂n′

)

dc(r′). (2.15)
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Splitting up (2.13) into integrations over the different areas Si in which σ(r) is contin-

uous and invoking Gauss’ law yields a sum of surface integrals along all boundaries ci
of Si. On the internal boundaries ciin of discontinuity in σ(r), the quasi-TM tangential

magnetic field can be simplified as

htan ≈ 1

jωµ0

(∂ez

∂n
− 1

σ

∂2hz

∂z ∂tan

)

≈ 1

jωµ0

∂ez

∂n
, (2.16)

because in the quasi-TM approximation (1/σ) ∂2hz/∂z ∂tan is negligible with re-

spect to ∂ez/∂n on ciin , or at least (if ∂ez/∂n on ciin itself is very small) with respect

to ∂ez/∂n on the outer boundary. Consequently, the continuity of htan allows for

the continuity requirement of ∂ez/∂n on these ciin . Hence, the contributions of the

internal boundaries drop out, such that the integration (2.14) over the outer boundary

c remains. The fictitious field quantity ez0 in (2.15) has the same value as ez on the

boundary c of S, but satisfies Laplace’s equation ∇2
t ez0 = 0 within S, such that its

contribution to (2.15) is zero. With the introduction of ez0, however, the integrand

of (2.15) becomes the equivalent differential surface current density js, as introduced

in [1]. The surface admittance operator Y defined by

js(r
′∈ c) =

1

jωµ0

(∂ez(r
′)

∂n′
− ∂ez0(r

′)

∂n′

)

(2.17)

=

∮

c

Y(r′, r′′) ez(r
′′) dc(r′′) (2.18)

relates js to ez = ez0 on c. For the important case of completely homogeneous con-

ductors, the surface admittance matrix Y (i.e. the discretized form of Y) can be found
by expanding (ez − ez0) over S into the Dirichlet eigenfunctions of the cross sec-

tion [1]. Only for simple geometries (rectangle, circle), the Dirichlet eigenfunctions

can be written down analytically. In more general configurations, Y can be obtained,

for example, from integral methods as in [13]. Using (2.18), expression (2.15) for the

current is rewritten as

I =

∮

c

dc(r′)

∮

c

Y(r′, r′′) ez(r
′′) dc(r′′). (2.19)

In (2.19), I is determined by Y (which accounts for the geometry and material prop-
erties of the conductor) and by the boundary value of ez ,

ez(r) = −∂V
∂z

− jωaz(r), r ∈ c (2.20)

with V (z) the constant boundary value of the electric potential φ on c and az the

longitudinal component of the magnetic vector potential. The total circuit impedance
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is found as Z = R + jωL = −(∂V/∂z)/I . In order to define an internal impedance

Zin, the total current I is subdivided into two contributions Iin and I − Iin, such that

Zin becomes

Zin = −(∂V/∂z)/Iin. (2.21)

To determine Iin, the following reasoning can be adopted. The part of the current

through S that is induced by any magnetic field due to external currents, should not be

included in Iin. We therefore assume that there are no currents outside S (or rather that

the PEC reference conductor is infinitely far away, see Fig. 1 for h → ∞), such that
the so-called proximity effect is not present and such that ht both inside and outside S

completely follows from the current distribution over S. Further, we want to extract

from I the part that is related to the external magnetic field, which is, in accordance

with the quasi-TM approximations, found as

µ0ht(r) = −uz ×∇t az(r), r ∈ S, (2.22)

with S the area outside the conductor, where az satisfies Laplace’s equation. The

external magnetic field would only vanish if az outside the conductor were constant

or, hence, zero, because on the reference at infinity az = 0. The az-value on c would

then be zero as well. Consequently, in order to determine Iin, az is set to zero in

(2.20), such that the influence of the external magnetic field is omitted, and hence

from (2.19)

Iin = −∂V
∂z

∮

c

dc(r′)

∮

c

Y(r′, r′′) dc(r′′). (2.23)

The constant boundary value ∂V/∂z was put in front of the integration. Hence, (2.21)

and (2.23) lead to

Z−1
in =

∮

c

dc(r′)

∮

c

Y(r′, r′′) dc(r′′) (2.24)

showing that Y uniquely determines Zin.

Homogeneous Conductors

For a homogeneous conductor, [1] shows how (ez−ez0) can be expanded into a series

of the Dirichlet eigenfunctions ξν of S, which leads to

js(r) = σ
∑

ν

1

k2
ν(jωµ0σ + k2

ν)

∂ξν(r)

∂n

∮

c

ez
∂ξν
∂n

dc, r ∈ c, (2.25)
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with k2
ν the eigenvalue corresponding to the Dirichlet eigenfunction ξν . Combining

(2.18), (2.24) and (2.25), yields

Z−1
in = σ

∑

ν

( ∮

c
∂ξν

∂n dc
)2

k2
ν(jωµ0σ + k2

ν)
. (2.26)

For the rectangular region −a ≤ x ≤ a and −b ≤ y ≤ b, the Dirichlet eigenfunctions

ξmn and the eigenvalues k
2
mn satisfying∇2

t ξmn + k2
mnξ

2
mn = 0, are given by

ξmn =
1√
ab

sin

(

mπ(x− a)

2a

)

sin

(

nπ(y − b)

2b

)

(2.27)

k2
mn =

(mπ

2a

)2

+
(nπ

2b

)2

(2.28)

such that, after some manipulations, (2.26) becomes

Z−1
in =

16σ

ab

∞
∑

m=1

∞
∑

n=1

(

(m−1/2)π
a

)2

+
(

(n−1/2)π
b

)2

(

(m−1/2)π
a

)2(
(n−1/2)π

b

)2

× 1
(

(m−1/2)π
a

)2

+
(

(n−1/2)π
b

)2

+ jωµ0σ
. (2.29)

This result is identical to eqn. 10 of [12] and demonstrates the correctness of the

presented method.

Further Discussion on the Meaning of Zin

It is important to realize that, even though the boundary value on c of the contribution

jωaz to ez fully determines the magnetic field outside the conductor, the inside and

the outside magnetic fields are inextricably linked, due to the connection between

the −∂φ/∂z and −jωaz parts of the internal ez field, as enforced by Ampère’s law.

Extracting Zin (as defined in this paper) from the total impedance Z , is based on the

solution of the diffusion equation inside the conductor, by eliminating the influence of

the outside of the conductor by means of the nonphysical boundary condition az = 0.

The authors of [12] present two different ways to excite the conductor, (i.e. an

internal and an external excitation) which both lead to exactly the same Zin. In both

cases they presume that on the outer boundary c of the conductor the ez field equals

the voltage drop per unit length −∂V/∂z, hence they also assume az = 0 on c. Cal-

culating the current with the boundary condition az = 0 on c therefore yields Iin and

hence the internal impedance given by (2.24), as confirmed by (2.29).

Another way to define Zin is the method used in [8]. The conductor is placed

in free space, so as to eliminate the proximity effect, and the current distribution is
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determined with the help of the quasi-static free space Green’s function. The correct

(nonconstant) value of az on c and the corresponding current distribution over S are

determined and then used to calculate Zin. The longitudinal electric field ez on c is not

constant, but especially at the higher frequencies ez gets stronger near the corners, due

to the external magnetic field. The solution to the diffusion equation for the current

density in the conductor is hence different from the one obtained for az = 0, except

at DC or for an isolated circular conductor, where both solutions are identical.

We don’t pretend to know whether the definition for Zin used in [8] or the one

proposed in [12] is the more correct or apt one. Both definitions eliminate the prox-

imity effect. The former one seems more physically acceptable in the sense that it

uses the current due to the total magnetic field to determine Rin, and only uses the

internal magnetic field to determine Lin. The latter one is based on the elimination

of the effect of the external magnetic field to calculate both Rin and Lin. It accounts

for the influence of the surface voltage excitation only, sometimes referred to as the

impressed electric field E0 = −∂V/∂z, although this impressed field cannot be phys-
ically separated from the total electric field.

Both the internal electric and magnetic field in a realistic configuration are subject

to the proximity effect, i.e. the presence of the nearby currents. None of the above

definitions for Zin can therefore be used to accurately take into account the finite

conductivity of a conductor, by adding Zin to the circuit impedance obtained for the

perfect conductor case, see also [11] and the examples in Section 2.2.3.

Calculation of Zin Based on Energy Considerations

In the numerical examples of Section 2.2.3, a comparison is made between the dif-

ferent methods to calculate the internal impedance. To obtain the numerical data, a

boundary integral equation method is used [14], and consequently, the definition of

the internal inductance according to [8],

|I|2Lin = µ0

∫∫

S

|ht|2 dS (2.30)

needs to be transformed into an integral over the boundary of the considered conduc-

tor. Using a power conservation argument, a suitable expression for Zin (including

both inductance and resistance) will be derived. It can be applied for a conductor

in free space (and corresponds as such to the definition used in [8]), but can also be

used for a signal conductor in a more realistic configuration, such as a microstrip.

In Section 2.2.3, the difference between both situations will be used to visualize the

proximity effect. The method described underneath leads to an expression for Zin as

a function of the boundary ez field and its normal derivative. A similar result for the

circuit inductance and resistance matrices was obtained in [9].

In order for the transmission line to transmit the same complex power as its circuit
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equivalent (with current I and voltage V ),

V I∗ =

∫∫

Stot

(

et × h∗
t

)

· uz dS (2.31)

is invoked, with Stot the total transverse cross section. The fundamental laws of Fara-

day and Ampère (assuming an e−jβz dependence)

∇tez + jβet = −jωµ0 uz × ht, (2.32)

∇t × ht = (σ + jωǫ) ezuz (2.33)

together with the telegrapher’s equation jβV = ZI , are used to write (2.31) as

Z|I|2 =

∫∫

Stot

(σ + jωǫ)∗|ez|2 dS +jω

∫∫

Stot

µ0|ht|2 dS. (2.34)

The internal impedance of the signal conductor with area S is consequently defined

(with σ ≫ ωǫ0) as

Zin|I|2 def
=

∫∫

S

σ|ez |2 dS + jω

∫∫

S

µ0|ht|2 dS. (2.35)

Invoking (2.32) and (2.12), (2.35) is rewritten, with Zin = Rin + jωLin, as

(

Rin + jωLin

)

|I|2 =

∫∫

S

(

σ|ez|2 −
|∇tez|2
jωµ0

)

dS − prest (2.36)

≈ − 1

jωµ0

∮

c

ez
∂e∗z
∂n

dc. (2.37)

All contributions of the internal boundaries of discontinuity in σ(r) are cancelled out

because of the continuity of ez and htan. The remaining integral encompasses, again,

only the outer boundary of the conductor. In order to obtain (2.37), the term prest was

neglected, based on a number of quasi-TM approximations. prest is determined by

jωµ0 prest = 2 Re

(

β2

∫∫

S

|ez|2 dS + jβ
∑

i

∮

ci

en e
∗
z dc

)

+|β|2
∫∫

S

|et|2 dS, (2.38)

in which the first term can be neglected w.r.t. the first term on the r.h.s. of (2.36), be-

cause |β|2/ωµ0 ≪ σ. Furthermore, because the fields vary much faster in the trans-
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verse direction than along z, and because the longitudinal electric field ez is much

larger than the transverse field et, |βet| ≪ |∇tez| within S. For the same reasons,
|βen| (with en the normal component of the electric field) on all boundaries ci is

much smaller than |∂ez/∂n| on the conductor’s boundary c. The other terms on the
r.h.s. of (2.38) can hence be neglected as well. The boundary value of ez , for use in

(2.37), is calculated as

ez(r) = jβV + jωµ0

∑

i

∮

ci

G0(r|r′) js(r
′) dc′, r ∈ c (2.39)

in which G0(r|r′) is the quasi-static free space Green’s function and js is the equiv-

alent differential surface current density on the boundaries of the subregions Si (with

continuous conductivity), following from the solution of the complex capacitance and

inductance problem. If the electric andmagnetic energy density are integrated over the

cross section of a conductor in an inhomogeneous environment (e.g., above a semicon-

ducting substrate, and in the vicinity of other conductors), (2.39) has to be modified.

The reader is referred to [14] for further details. The value of ∂ez/∂n along c, also re-

quired in (2.37), can be calculated with the help of the Dirichlet to Neumann operator,

mapping the boundary value of ez to its normal derivative.

2.2.3 Numerical Results

In a number of numerical examples, both presented methods to calculate the internal

impedance, (2.24) and (2.37), will be compared. First, these expressions are applied

to a homogeneous rectangular conductor, and the results are verified with data from

[8] and [12]. As a next example, a composite conductor is considered. Next, the

influence of rectangular corners on a conductor’s internal resistance is investigated,

so as to further clarify one of the subjects of discussion in [10] and [11]. In a final

simulation, the difference between the incremental inductance, as proposed in [11],

and the internal inductance is examined.

Throughout the next paragraphs, the lower index ‘in’ denotes the internal impedance

quantities, for example, Zin, as opposed to the global circuit impedance Z . The lower

index ‘Y’ as in Zin,Y indicates the use of (2.24) to calculate the internal impedance,

i.e. by means of the surface admittance operator Y of the conductor, based on the
condition ez = const on c. The internal impedance calculated with (2.37), by inte-

gration of the internal magnetic and electric energy density, is denoted with the lower

index ‘E’. Zin,E is calculated for the considered conductor in free space, omitting the

proximity effect.
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Figure 2.9: Internal impedance Zin = (Rin + jωLin) of a rectangular copper conductor
(dimensions 15 mil × 1.4mil, conductivity σ = 58MS/m). Different calculation methods:
Zin,E via (2.37), and Zin,Y via (2.24); verification using [8] and [12].

Internal Impedance of a Homogenous Rectangular Conductor

Consider an isolated rectangular copper conductor with dimensions 15 mil × 1.4 mil

(or 381µm × 35.56µm). Fig. 2.9 presents the real part (Rin) and imaginary part

(ωLin) of the internal impedance of the conductor.

The results obtained with (2.37), by integrating the energy density over the con-

ductor’s cross-section, are compared with data from [8]. The agreement is good,

except for a small deviation at the highest frequencies. In [8], the conductor was

discretized into 172 × 16 subrectangles, such that at 1 GHz the skin depth roughly

equals one discretization interval. The discretization used in our simulation (225 in-

tervals along the length and 21 along the width of the conductor) is only slightly finer,

but the method is based on boundary quantities only (due to the surface admittance

operator) and hence more apt to be used at skin effect frequencies. It was verified

that reducing the number of discretization intervals by a factor of three (and along the

length of the conductor even more), still produces very good results.

The internal impedanceZin,Y , calculated using the surface admittancematrix, pro-

duces identical results as Eqn. (10) from [12], as indicated by (2.29). The large dif-

ference between Zin,Y and Zin,E is due to the non-constant component of ez on the

conductor’s boundary, more in particular the increase around the corners, as will be

further discussed in some of the following examples.

The difference in the behavior of Rin,E and Rin,Y is very pronounced due to the

shape of the conductor and is worth some comments. In Rin,Y , only the skin effect

plays a role (for a constant boundary value of ez), and it becomes clearly visible when
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Figure 2.10: Full lines: (a) internal resistance and (b) internal inductance for the coated con-

ductor shown in the inset of (a), with σbulk = 58.8 MS/m, and σcoating = 7.7 MS/m. Dashed
lines: analogously, but for σcoating = σbulk = 58.8 MS/m.

the smallest dimension of the block (1.4 mil) gets larger than about two skin depths

(around 14 MHz). Rin,E additionally comprises the influence of the non-uniformity in

the boundary value of ez , which becomes important as soon as the largest dimension

of the conductor (15 mil) becomes a few skin depths long, which happens at much

lower frequencies.

Internal Impedance of a Composite Conductor

The conductor in the inset of Fig. 2.10 consists of copper (σ = 58.8 MS/m), with

a chromium coating (σ = 7.7 MS/m) along three sides. Its internal resistance and

inductance are shown, respectively, in Fig. 2.10 (a) and (b). The obtained Rin and

Lin (full lines) are compared with those, calculated for a homogeneous copper con-

ductor with the same area (dashed lines). At skin-effect frequencies, as long as the
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σ = 58 MS/m
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Figure 2.11: Copper conductor Γ, used to investigate the influence of corners. The total area S
is 2500µm2, and w1 = 4.64µm, w2 = 8.29µm, w3 = 10.94µm, w4 = 11.93 µm.

current is not flowing entirely within the coating (which is the case up to approxi-

mately 1014 Hz), the resistance for the coated conductor increases faster than ∝
√
f ,

because a relatively larger part of the current goes through the less conducting coating.

The inductances are also higher for the coated than for the homogeneous conductor,

due to the difference in the current distribution. The differences between both ways

to calculate Zin can readily be explained as well. Rin,E > Rin,Y at skin effect fre-

quencies, because an increased ez at the corners forces a larger part of the current

through a smaller area, hence, resulting in a higher resistance. The contribution of the

(nonconstant) boundary value of az for the calculation ofLin,E leads to Lin,E > Lin,Y .

Contrary to what one might expect, the low-frequency limit of the internal in-

ductance is not the same for both discussed methods. The contribution to Zin that

remains as f → 0, is only its real part, the DC resistance Rin,DC, related to the to-

tal ‘impressed’ current, and therefore identical for both methods. The imaginary part

ωLin,DC, however, is different in both methods. It is related to that part of the total

current that is induced by (the change in time of) the magnetic field generated by the

‘impressed’ part of the current (and is therefore proportional to the frequency). That

magnetic field is not uniform, both inside the conductor as along its boundary. Its ex-

ponential decrease inside the conductor causes current crowding at higher frequencies

but is barely noticeable at low frequencies (as it is ∝ f ). This phenomenon is com-

prised in both ωLin,Y and ωLin,E . The magnetic field’s (variable) boundary value,

related to the outside magnetic field, causes the boundary variation of az and hence a

second contribution to ωLin,E , not comprised in ωLin,Y . This explains the difference

Lin,DC,E > Lin,DC,Y . The authors would like to stress that this difference is only due

to the different definitions used in (2.24) and (2.37) for the internal inductance. For

the total inductance, there is one unique value, independent of the way it is calculated.
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Influence of Corners on the Internal Resistance

Consider the copper conductor Γ shown in Fig. 2.11. On the one hand, Rin,E is cal-

culated from (2.37). The result equals the circuit resistance of the isolated conductor

Γ in free space (obtained by means of the techniques described in [15]), and hence

corresponds to the definition of Rin as used in [8]. On the other hand, Rin,Y is calcu-

lated from (2.24), in accordance to the definition of [12]. The total surface admittance

matrix was determined by means of the Dirichlet to Neumann operator.

To investigate the influence of the corners on Rin, we will compare Γ to the cir-

cular conductor Γcirc with the same area S, also shown in Fig 2.11. For Γcirc, both

definitions yield the same Rin [7], i.e. Rin,Y = Rin,E = Rin.

Fig. 2.12 shows that all the low-frequency internal resistances equal the DC resis-

tance of a copper conductor with cross-sectional area S. At skin-effect frequencies,

Rin,Y for Γ is lower than for the circular conductor Γcirc because its perimeter La is

longer than the circumferenceLc of the circle. Fig. 2.12 shows howRin,Y approaches

the high-frequency limit of, respectively, 1/(σLaδ) for Γ and 1/(σLcδ) for Γcirc, with

δ the skin depth. The convergence to this limit is a bit slower forΓ, because the corners

disturb the local plane wave character of the internal field distribution. Calculating

Rin,E for Γ results in a higher value than for Γcirc, even though its perimeter is longer

and the skin-effect is already well-developed at the highest frequencies (δ ≈ w1/10

at 20 GHz). Due to the increased ez field associated with the important external mag-

netic field near the corners, a larger part of the current2 flows in smaller areas near

these corners, which explains why Rin,E is significantly higher than Rin,Y .

Internal vs. Incremental Inductance

As a final example, the internal inductance of a single microstrip line (Fig. 2.13) is

investigated. The dielectric layer between the signal line and the ground plane was

chosen quite thin, such as to clearly demonstrate the effect of the magnetic field gen-

erated by the return currents. The caret symbol “ˆ” denotes impedance quantities for

the total microstrip configuration, as opposed to placing the conductor in free space.

A number of different results for the internal inductance are presented in Fig. 2.14.

(L̂ − L̂PEC) is the incremental inductance, defined by the total inductance of the

microstrip configuration minus the inductance obtained for a perfectly electric con-

ducting (PEC) line. (L − LPEC) is the incremental inductance in case the conductor

is standing on its own in free space. Further, L̂in,E and Lin,E denote the internal in-

ductance obtained by integration of the magnetic energy density over the conductor’s

cross section, respectively, for the microstrip line and for the isolated conductor case.

Finally, Lin,Y is the internal inductance, obtained for a constant surface value of ez .

2A more precise analysis (see Chapter 5), shows that in the vicinity of the corners, there is not only an

increase of the current density, but also a phase shift with respect to the ‘plane wave’-like behavior away

from the corners, which leads to the increased line resistance.
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Figure 2.12: Internal resistance for conductor Γ (see Fig. 2.11) and the circular conductor Γcirc

with the same cross-sectional area S.
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Figure 2.13: Single microstrip configuration.

For the lowest frequencies, the magnetic field fully penetrates the conductor and

all inductance values in Fig. 2.14 are constant, whereas for skin effect frequencies

they all decrease as 1/
√
f . Lin,Y is lower than the other internal inductances, be-

cause a part of the total magnetic flux inside the conductor is omitted. Firstly, the

magnetic flux generated by external currents is left out. This flux is responsible for

the proximity-effect, which is also the reason why (L̂ − L̂PEC) > (L − LPEC) and

L̂in,E > Lin,E . Secondly, Lin,Y doesn’t contain the internal flux generated by that

part of the current that is related to the external magnetic field. It is also observed that

(L̂− L̂PEC) > L̂in,E and (L− LPEC) > Lin,E . This means that the magnetic energy

p.u.l. outside the copper conductor, for a unit current flowing through the line, is higher

than the total magnetic energy p.u.l. for the PEC conductor case. The difference in the

external magnetic field is due to the difference between a uniform current density and

a surface current distribution. Consequently, the determination of Lin by integration

of the magnetic energy inside the conductor, leads to a result which deviates from the

incremental inductance, especially at low frequencies.

The real and imaginary part of Zin,E and Zin,Y up to very high frequencies are
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Figure 2.14: Incremental and internal inductance for the configuration of Fig. 2.13.

shown in Fig. 2.15. At skin-effect frequencies, Rin,E remains slightly higher than

Rin,Y , due to the increased electric field near the corners.

2.2.4 Conclusions

In this paper, the authors tried to clarify the meaning of a conductor’s internal re-

sistance and inductance p.u.l., by carefully formulating the proper definitions and

elucidating some aspects that were leading to discussions in previous papers. The

surface admittance boundary operator appears to be a useful tool to describe the con-

ductor’s behavior. In its integrated form, it directly leads to the inverse of the internal

impedance (in accordance to one of the definitions used in literature). Yet neither

of the presented techniques to calculate the internal impedance produces an accurate

approximation of the incremental impedance, mainly due to the influence of the re-

turn current on internal current distributions in a realistic configuration. Furthermore,

the numerical cost of a simulation with realistic conductors, even for more compli-

cated composite conductors, is no longer much higher than for PEC conductors, e.g.,

when the effect of the conductor is represented by a fully equivalent differential sur-

face current and its corresponding surface admittance operator. The authors therefore

believe that the importance of internal impedance calculations will decline, in favour

of simulations which directly take into account the correct finite conductivity of the

conductors.
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Figure 2.15: Internal impedance Zin = (Rin+jωLin) of the conductor in Fig. 2.13, calculated
from the internal energy (subscript E, solid lines), respectively, with constant ez on the boundary

(subscript Y, dashed lines).
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The Dirichlet to Neumann (DtN) operator is a useful tool in the characteriza-

tion of interconnect structures. In combination with the Method of Moments, it

can be used for the calculation of the per unit length transmission line param-

eters of multi-conductor interconnections, or to directly determine the inter-

nal impedance of conductors. This paper presents a new and fast calculation

method for the DtN boundary operator in the important case of rectangular

structures, based on the superposition of parallel-plate waveguide modes. Es-

pecially for its non-differential form, some numerical issues need to be ad-

dressed. It is further explained how the DtN operator can be determined for

composite geometries. The theory is illustrated with some numerical examples.
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3.1 Introduction

For accurate signal integrity simulations of on-chip interconnect structures, a broad-

band transmission line model is required. In the near future, systems with speeds of

40 Gbit/s and higher will be developed, for which undesired effects as cross-talk,

losses, and wave propagation on interconnects will play an important role. On printed

circuit boards (PCB) at these frequencies, the skin effect is strongly developed, leading

to highly increased losses, and taking into account wave propagation effects is emi-

nently important for signal integrity predictions. Sources and loads should therefore

be carefully matched, up to the highest frequencies. In order to predict all these ef-

fects, an advanced transmission line model is required, rigorously taking into account

the material properties and geometry of the considered structures.

In [1], such a 2-D multi-conductor transmission line model is developed for the

determination of the quasi-TM resistance, inductance, capacitance and conductance

matrices of the system. All homogeneous materials (including dielectrics, conduc-

tors and semiconductors) are replaced by an equivalent contrast current source in free

space. These sources can be transformed into surface sources, resulting in a boundary

integral equation formulation of the problem. Essential herein, is the use of the Dirich-

let to Neumann boundary operator (as introduced below), which allows to deal with a

large variation in geometry parameters, see Section 3.3.2. The boundary formulation

is advantageous with respect to other methods that are based on a volume discretiza-

tion, such as the single-conductor model presented in [2], based on a combination of

the Method of Moments and the Method of Lines.

In [1], the transmission line characterization is split up into two parts. For the

resistance-inductance (RL) problem, the contrast currents are transformed into differ-

ential surface currents js on the boundary of conductors and semiconductors, defined

for an ejωt-dependence of the fields, as [3]

js(r) =
1

jωµ0

(∂ez(r)

∂n
− ∂ez0(r)

∂n

)

, r ∈ c (3.1)

with ∂/∂n the outward normal derivative with respect to the boundary c of the consid-

ered material S. ez satisfies the diffusion equation∇2
t ez = jωµ0σez (with the index

t denoting the transverse xy-plane), whereas ez0 is defined with the same boundary

value on c, but in free space, and satisfies Laplace’s equation∇2
t ez0 = 0 inside S. For

the capacitance-conductance (CG) problem, the contrast sources lead to the surface

charge on the conductors, and an equivalent surface charge ρs

ρs(r) =
(

ǫ− ǫ0 + σ/jω
) ∂φ(r)

∂n
, r ∈ c (3.2)

on the boundaries of dielectrics and semiconductors. φ is the scalar electric poten-

tial, satisfying Laplace’s equation or the diffusion equation in, respectively, dielectrics
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and semiconductors. Consequently, the transformed problem only uses frequency-

dependent surface currents and charges in free space, and can be directly solved with

the Method of Moments (MoM). For further details, the reader is referred to [1].

The DtN operatorsD andD0 are essential in both the RL and the CG problem and

are defined, for r ∈ c, by

∂ψ(r)

∂n
=

∮

c

D(r, r′)ψ(r′) dc′, r ∈ c (3.3)

∂ψ0(r)

∂n
=

∮

c

D0(r, r
′)ψ0(r

′) dc′, r ∈ c (3.4)

with

∇2
tψ(r) = jωµ0σ ψ(r) and ∇2

tψ0(r) = 0, r ∈ S (3.5)

Hence (3.1) and (3.2) can be written concisely as

jωµ0 js,c =

∮

c

(D −D0) ez dc (3.6)

ρs,c =
(

ǫ− ǫ0 + σ/jω
)

∮

c

D φdc. (3.7)

with lower index c to denote evaluation on the considered boundary.

Section 3.2 deals with the discretization of (D − D0), in the sequel called the

differential DtN operator, and D, the non-differential DtN operator, on the boundary
of a rectangular area, with an extension to arbitrary shapes which are composed of

rectangular blocks. In section 3.3 some applications are discussed, including internal

impedance calculations and transmission line modeling. Finally, some conclusions

are formulated in Section 3.4.

3.2 Construction of the DtN Operator

In [3], a method to calculate the matrix (D−D0) as theMoMdiscretization of (D−D0)

for the rectangular area S is proposed, based on the following strategy. A general

boundary function ψ expanded in piecewise constant basis functions is projected on a

basis of the Dirichlet eigenfunctions of S, resulting for a rectangle in a double sum-

mation of sines functions. Next, the normal derivative of each Dirichlet function is

calculated, and the double summation is again weighted with the original basis func-

tions, resulting in an expression for ∂ψ/∂n. For the contribution of ψ on one side,

to ∂ψ/∂n on the same or the opposite side, the remaining double summation can be

transformed into a single sum. For the interaction between adjacent sides however, a

double infinite summation remains, each to be judiciously truncated. The proposed
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method in this paper directly leads to a single summation for all interactions, and,

hence, a much faster calculation. Another reason to introduce the new calculation

method presented in this paper, is the need for the non-differential DtN operator for

the CG problem, which was not required for the RL problem treated in [3]. The func-

tion ez − ez0, the Dirichlet expansion of which is needed to discretize (3.6), is zero

on c, and the Dirichlet functions of S are indeed only complete on S including its

boundary, for the expansion of a function with a zero boundary value. The Dirichlet

expansion of ψ with a non-zero boundary value, needed for (3.7), would lead to an

important Gibbs phenomenon on the total boundary c, leading to highly inaccurate

results. This problem is circumvented with the new method, as will be shown in the

next paragraphs.

3.2.1 Rectangular Cross-Section

Consider region S ↔ x ∈ [0, x0], y ∈ [0, y0], with boundary c and sides c1(y =

0), c2(x = x0), c3(y = y0) and c4(x = 0). The aim is to determine the discretized

(matrix) form D of operator D, for which

∂ψ(r)

∂n
=

∮

c

D(r, r′)ψ(r′) dc(r′), r ∈ c (3.8)

∇2
tψ(r) = −k2 ψ(r), r ∈ S (3.9)

with r = xux + yuy the position vector in the chosen (x, y) system. First, an expan-

sion of ψ is constructed from the knowledge of its boundary value ψc and based on

(3.9). The contribution of each side is treated separately, by splitting up ψ as

ψ(x, y) =

4
∑

i=1

ψ(i)(x, y) (3.10)

in which ψ(i) takes the actual boundary value of ψ on side ci, and is zero on the other

sides. Expanding ψ on c1 (written as ψc1
) into sines immediately leads to

ψ(1)(x, y) =

N1
∑

n=1

A(1)
n sin

(nπx

x0

)

f−
n

(

y/y0
)

(3.11)

with f−
n (s), for s ∈ [0, 1], defined as

f−
n (s) =

ejβny0s − ejβny0(2−s)

1 − ejβn2y0

and f+
n (s) =

ejβny0s + ejβny0(2−s)

1 − ejβn2y0

.

(3.12)

The function f+
n is introduced as well, as it will be needed in the sequel. The upper

limitN1 in (3.11) is taken high enough, such that the truncated sine expansion on c1 is
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a good approximation of the actual boundary value of ψ1. The βn in (3.12) are found

from

β2
n = k2 −

(nπ

x0

)2

(3.13)

and the square root is chosen such, that Re(jβn) < 0. As required, (3.11) satisfies

(3.9), reduces to

ψ(1)
c1

=

N1
∑

n=1

A(1)
n sin

(nπx

x0

)

(3.14)

on c1, and is zero on the other sides. Expansion (3.11) can be seen as an expansion

in the modes of a parallel-plate waveguide with c2 and c4 as its plates, more specif-

ically these modes that are zero on c3. The functions ψ
(i) (i = 2, 3, 4) are defined

analogously to (3.11), but with the sine expansions on the corresponding sides ci, re-

spectively, and with an analogous interpretation in terms of an expansion in waveguide

modes.

Along each side, we will use the normalized coordinate s ∈ [0, 1] (in counter-

clockwise direction), such that the sides are determined by

c1 ↔ {x = s x0, y = 0} (3.15)

c2 ↔ {x = x0, y = s y0} (3.16)

c3 ↔ {x = (1 − s)x0, y = y0} (3.17)

c4 ↔ {x = 0, y = (1 − s) y0} (3.18)

In order to discretize ψ on c1, this side is divided into M1 segments, using the dis-

cretization points xm, (m = 1, . . . ,M1 + 1), not necessarily chosen uniformly along

c1, and with x1 and xM1+1 the corner points. The normalized coordinates of these

discretization points are sm = xm/x0, such that s1 = 0 and sM1+1 = 1. An anal-

ogous discretization is performed for the other sides, with the segments numbered in

counter-clockwise direction. On side ci (i = 1, 2, 3, 4), ψci
can hence be approxi-

mated by

ψci
(s) ≃

Mi
∑

m=1

Ψci,m tci,m(s), 0 ≤ s ≤ 1. (3.19)

The basis functions tci,m(s), with m = 1, . . . ,Mi, can be a constant pulse on the

interval [sm, sm+1] (corresponding, e.g. on c1, to x ∈ [xm, xm+1]), a piecewise linear

‘hat’ function on [sm−1, sm+1], or any other basis function. The coefficients Ψci,m

are taken together into one column vectorΨc as

Ψc =









Ψc1

Ψc2

Ψc3

Ψc4









(3.20)
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in which [Ψci
]m = Ψci,m. In a first step, the expansion coefficients A

(1)
n from (3.11)

(and grouped in the vector A(1)) are determined from the coefficients Ψc1,m. By

inserting (3.15) in (3.11), we find with (3.19)

ψ(1)
c1

≃
M1
∑

m=1

Ψc1,m tc1,m(s) ≃
N1
∑

n=1

A(1)
n sin (nπs) (3.21)

and, by weighting with the set {2 sinnπs},

Q1 · Ψc1
= A(1) (3.22)

The N1 ×M1 matrix Q1 is given by

[

Q1

]

n,m
= 2

∫ 1

0

tc1,m(s) sinnπs ds. (3.23)

The knowledge of the coefficients A
(1)
n determines the normal derivative of ψ(1) on

each side of S. We find from (3.11), invoking (3.12) and (3.15)-(3.18),

∂ψ
(1)
c1

(s)

∂n
=

N1
∑

n=1

−jβn f
+
n (0) sinnπs A(1)

n (3.24)

∂ψ
(1)
c2

(s)

∂n
=

N1
∑

n=1

nπ

x0
(−1)n f−

n (s) A(1)
n (3.25)

∂ψ
(1)
c3

(s)

∂n
=

N1
∑

n=1

jβn f
+
n (1) sinnπ(1 − s) A(1)

n (3.26)

∂ψ
(1)
c4

(s)

∂n
=

N1
∑

n=1

−nπ
x0

f−
n (1 − s) A(1)

n (3.27)

The normal derivative ∂ψ(1)/∂n is discretized on side ci, as

∂ψ
(1)
ci (s)

∂n
≃

Mi
∑

m=1

Γ(1)
ci,m tci,m(s) (3.28)

and weighting (3.24-3.27) with the basis functions tci,m(s) on the corresponding

sides, leads with (3.28) to

Bi · Γ(1)
ci

= Ti1 · A(1), with i = 1, . . . , 4 (3.29)
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with theMi ×Mi weighting matrices Bi given by

[

Bi

]

m,m̃
=

∫ 1

0

tci,m(s) tci,m̃(s) ds (3.30)

and theMi ×N1 submatrices Ti1 given by

[

T11

]

m̃,n
= −jβn f

+
n (0)

∫ 1

0

sinnπs tc1,m̃(s) ds (3.31)

[

T21

]

m̃,n
=

nπ

x0
(−1)n

∫ 1

0

f−
n (s) tc2,m̃(s) ds (3.32)

[

T31

]

m̃,n
= jβn f

+
n (1)

∫ 1

0

sinnπ(1 − s) tc3,m̃(s) ds (3.33)

[

T41

]

m̃,n
= −nπ

x0

∫ 1

0

f−
n (1 − s) tc4,m̃(s) ds. (3.34)

Finally, with (3.22) and (3.29),

Γ(1)
c = D(1) · Ψc1

(3.35)

for

Γ(1)
c =











Γ
(1)
c1

Γ
(1)
c2

Γ
(1)
c3

Γ
(1)
c4











and D(1) =









B1
−1

T11

B2
−1

T21

B3
−1

T31

B4
−1

T41









· Q1 (3.36)

The matrix D(1) maps the boundary value of ψ(1), i.e., the actual value of ψ on c1
and zero on the other sides, onto its normal derivative ∂ψ

(1)
c /∂n. A similar procedure

yields the matrices D(2), D(3), and D(4) to account for the boundary value of ψ on

sides c2, c3, and c4. The total DtN matrix D can hence be constructed, with (3.20), as

D =
[

D(1) D(2) D(3) D(4)
]

(3.37)

The calculation as described above for the non-differential matrix D (or D0),

raises an accuracy problem in the corners of the rectangle. The sine expansion on

each side is actually the Fourier series of the “odd extension” of ψ on that side, and

hence discontinuous in case the corner values are non-zero. This causes a Gibbs phe-

nomenon that is reinforced in the calculation of ∂ψ/∂n, and leads to an inaccurate D.

However, a well-chosen mathematical manipulation allows to circumvent this prob-

lem. Let us first discuss the calculation of the non-differential matrix D0. A part

ψ̃0 = p1xy + p2x + p3y + p4 is beforehand subtracted from the total ψ0, as it obvi-

ously satisfies Laplace’s equation, and with the coefficients pi chosen such, that in the

four corners ψ̃0 = ψ0 (assuming ψ continuous along the boundary, which is indeed
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the case for both the electric scalar potential and for the longitudinal electric field).

The normal derivative of ψ̃0 is known analytically, and the technique described above

is then used for the calculation of ∂(ψ0 − ψ̃0)/∂n, immune to Gibbs phenomena as

the corner values are identically zero.

The differential DtN matrix (D − D0) is also calculated with the procedure ex-

plained in this section, but with the submatrices (Tij − T0,ij) instead of only Tij.

A careful calculation of these submatrices allows to take into account the fact that

ψc − ψ0,c = 0, such that no Gibbs phenomenon will be present, and (D − D0) is

accurate.

Finally, D can be calculated by adding D0 to (D − D0). Alternatively, D can

be calculated direcly as well. There always exists an analytically known function ψ̃

which has the same corner values as ψ itself, and satisfies the diffusion equation (3.9)

inside S, for any value of k2. Such a function ψ̃ can be formed as a linear combination

of four functions ψ̃pi (i = 1, . . . , 4), which are 1 in corner pi but zero in all the other

corners, and satisfy (3.9) inside S. Such a function is, e.g., for corner p1(0, 0)

ψ̃p1(x, y) = cos

(

πx

2x0

) (

ejβy − ejβ(2y0−y)

1 − ejβ2y0

)

(3.38)

with β2 = k2 − (π/2x0)
2, and analogous for the other corners. The numerical pro-

cedure to determine the DtN operator can then be correctly applied to ψ − ψ̃, and the

normal derivative of ψ̃ can be calculated separately, again leading to the correct DtN

operator.

An example is given to illustrate the explained ideas. Fig. 3.1 shows the normal

derivative of a harmonic function ψ0 of the form

ψ0(x, y) = α1

(

cos cx+ α2 sin cx
) (

ecy + α3e
−cy

)

+ α4, (3.39)

on the boundary of rectangle S, shown in the inset of Fig. 3.1. The coefficients α1 to

α4 can be determined from the arbitrarily chosen value c = 3π/2, together with the

indicated corner values of ψ0 in Fig. 3.1. A fine discretization was used (horizontally

100 intervals and 1000 sines, vertically 30 intervals and 300 sines). The analytical

normal derivative, ∂ψ0/∂n, is compared to the result with the compensation for non-

zero boundary values of ψ0, indicated in Fig. 3.1 as “ψ0 indirect”, and the results

are indistinguishable. Conversely, the method without compensation, denoted “ψ0

direct”, exhibits, as expected, an important Gibbs phenomenon in the three corners

where ψ0 6= 0.

3.2.2 General Cross-Sections

The following paragraphs describe how the matrix Dtot, i.e., the discretized form of

the operatorDtot, can be calculated for a general shape that consists of parts for which
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Figure 3.1: Normal derivative of a harmonic function ψ0. For “ψ0 direct”, ∂ψ0/∂n was cal-
culated as

H

c
D0ψ0 dc, whereas for “ψ0 indirect”, as ∂ψ̃0/∂n+

H

c
D0(ψ0 − ψ̃0) dc, avoiding

Gibbs phenomena.

the matrix D is known. A distinction has to be made between the discretization of

∂ez/∂n (for conductors) and ∂φ/∂n (for dielectrics), with ez the longitudinal electric

field, and φ the scalar electric potential.

In the case of a composite conductor, the matrix Dtot can be obtained from the

matrices D(i) of the different parts of the conductor (for which the conductivity σ(i)

is assumed constant) by elimination of the internal boundaries. To that end, two ad-

ditional conditions have to be imposed, i.e., the continuity of both ez and ∂ez/∂n on

the internal boundaries. In the quasi-TM approximation ∂ez/∂n is continuous, due to

the continuity of the cross-sectional tangential magnetic field

htan ≈ 1

jωµ0

(∂ez

∂n
− 1

σ

∂2hz

∂z ∂tan

)

≈ 1

jωµ0

∂ez

∂n
. (3.40)

For the determination of the differential surface admittance matrix Ytot = (Dtot −
D0,tot)/jωµ0 of a composite conductor [4], Dtot and D0,tot need to be determined sep-

arately from the corresponding matrices of the different parts. The reason is that ez

(satisfying the diffusion equation) and ez0 (satisfying Laplace’s equation) are not the

same on the inner boundaries of the total conductor (although they need to be identical

on the outer boundary, by definition).

In order to calculate the discretized form of ∂φ/∂n for composite (lossy) di-

electrics, the continuity of φ needs to be invoked, as well as the continuity of (ǫ +
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σ/jω) ∂φ/∂n, because for these materials et ≈ −∇tφ within the quasi-TM approxi-

mation [1].

3.3 Applications of the DtN Operator

3.3.1 Internal Impedance Calculations

Consider a conductor above a reference plane, situated infinitely far away (in order

to exclude proximity effects). The current I through the conductor can be written,

because ez inside the conductor satisfies the diffusion equation, as

I =

∫∫

S

σez dS =
1

jωµ0

∮

c

∂ez

∂n
dc = − 1

jωµ0

∮

c

dc

∮

c

D
(∂V

∂z
+ jωaz

)

dc

(3.41)

in which V is the constant boundary value of the electric scalar potential φ, and az

the longitudinal component of the magnetic vector potential. In order to determine

the internal impedance, the magnetic field outside the conductor should be made zero,

or, az = const = 0 because on the reference at infinity az = 0. It is physically not

possible to have a non-zero current without an external magnetic field. The above

reasoning is merely a way to conclude that the influence of the external magnetic field

is omitted from (3.41) by setting az = 0 on c. The remaining part Iin of the current

is related to the internal impedance Zin by ∂V/∂z = −Zin Iin, such that Zin can be
identified as

Z−1
in =

1

jωµ0

∮

c

dc

∮

c

D dc. (3.42)

Hence, the DtN operator directly leads to the internal impedance of a conductor. It

can be proven that, for the case of a homogeneous rectangular conductor, (3.42) is

identical to the result obtained in [5]. For more details, and a comparison with an

alternative calculation method for the internal impedance, the reader is referred to [6].

Consider the layered conductor shown in the inset of Fig. 3.2. The circuit behavior

of such a conductor in a microstrip configuration was described in [4]. It is now

possible to investigate the influence of the inhomogeneity, by determining Zin. To that

end, the total DtN operator for the composite conductor is calculated, and then with

(3.42) the internal impedance Zin = Rin + jωLin. The result is shown in Fig. 3.2,

where the layered conductor is compared to a homogeneous copper conductor with

the same geometry.

3.3.2 Transmission Line Modeling

A complete on-chip transmission line configuration is shown in Fig. 3.3. Two pairs

of parallel traces, (c1, c2) and (c3, c4), are embedded in a dielectric material above a
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Figure 3.2: Internal inductance Lin and internal resistance Rin for a layered conductor (σCu =
58 MS/m, σCr = 7.75 MS/m), compared to a homogeneous copper conductor.

semiconducting substrate. The DtN operator is used to replace conductors, semicon-

ductors and dielectrics by surface sources in free space, from which the transmission

line parameters are determined.

Some elements of the resulting transmission line matrices per unit length (the in-

ductance L, resistance R, capacitance C, and conductance G) are shown in Fig. 3.4.

In Fig. 3.4 (a), the inductance elements show that at the highest frequencies the mag-

netic field is for the greater part forced out of the conductors. This corresponds to the

current crowding effect, resulting in an increased resistance R11. The skin effect is

not yet fully developed though, as at 100 GHz the skindepth equals the conductors’

height. Fig. 3.4 (b) shows the capacitance and conductance elements. As motivated

in [1], a material is considered a good conductor as long as its conductivity σ ≫ ωǫ. If

that is the case for the semiconducting substrate, i.e., if the frequency is low enough,

a surface charge exists on top of the substrate. At 100 MHz, this surface charge is

still considerable (σs ≃ 30ωǫ, with σs = 2 S/m and ǫ = 12 ǫ0), but at 3 GHz,

σs ≃ ωǫ, and from higher frequencies onwards, the substrate behaves as a dielectric.

The presence of this low-frequency surface charge on the substrate increases the self-

capacitanceC11 but at the same time has a decoupling effect on the nearby conductors.

This explains why |C12| and |C23| increase when the substrate starts to behave as a di-
electric. It is also observed that the self-conductanceG11 increases once the dielectric

behavior of the substrate becomes dominant, because then a transverse electric field is

built up inside the substrate, causing the conductance losses.
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Figure 3.3: Cross section (not drawn to scale) of a four-line configuration (conductors c1 to
c4), with 3 reference lines (indicated as r). All dimensions are in micrometer.

It is now investigated how the signal line pairs of Fig. 3.3 are coupled, when they

are excited with perfectly differential currents. Both signal pairs are separated by a

reference conductor r (kept on zero potential). A reference conductor is placed on both

sides of the signal lines as well, so as to guarantee as good as possible the symmetry of

the configuration, avoiding the excitation of the common modes. First, consider only

the conductor pair (c1, c2), designed for a high-frequency differential characteristic

impedance of 175 Ω (in the absence of other conductors). The separation of 6µm

between c1 and c2 is chosen quite large to keep the mutual capacitance low, and as

such minimize the attenuation and maximize the propagation speed of the differential

mode. The separation cannot become too large, however, to keep the sensitivity with

respect to outside noise low.

Suppose two such pairs are used for a 500µm long on-chip interconnection, but

only little space is available, such that c2 and c3 can be separated by a distance of

15µm only, to keep the lines far enough away from other circuits. The inset of Fig. 3.5

shows how the lines are used to connect a source with a differential load impedance

of 175 Ω. The results in Fig. 3.5 show the output voltages |v12| and |v34| for a unit
current excitation of signal pair (c1, c2) and with the current source on the other pair

switched off. The configuration of Fig. 3.3 is compared with the case in which the

three reference conductors are left out. The coupling of both lines for a differential

excitation is, as expected, smaller when the reference conductors r shield the signal

lines. Yet the coupling is in both cases very weak (considering the factor 10 in the

graphical presentation of |v43/is|). What’s more, the presence of the conductors r
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Figure 3.4: Elements of the transmission line matrices (a) L (inductance) and R (resistance),
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Figure 3.5: Source-interconnect-load configuration and load voltages, comparing the configu-

ration of Fig. 3.3 with the case in which the reference conductors r are left away.

increases the capacitance of the signal lines. As a result, see |v12/is| in Fig. 3.5, the
attenuation gets higher, and the lines become electrically longer, such that wave effects

become important from slightly lower frequencies onwards.

3.4 Conclusion

This paper presents a new and efficient way to calculate the differential Dirichlet to

Neumann boundary operator for rectangular blocks. Unlike the original calculation

method [3], the new method allows to calculate the non-differential DtN operator as

well, which is needed on the one hand for capacitance calculations and, on the other

hand, to calculate the DtN operator for more complicated shapes. Some numerical

examples demonstrate the practical use of the DtN operator for internal impedance

calculations and, especially, for accurate transmission line modeling.
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This paper introduces a fast and accurate method to investigate the broad-

band inductive and resistive behavior of conductors with a non-rectangular

cross-section. The presented Iterative Combined Waveguide Modes (ICWM)

algorithm leads to an expansion of the longitudinal electric field inside a trian-

gle, using a combination of parallel-plate waveguide modes in three directions,

each perpendicular to one of the triangle sides. This expansion is used to cal-

culate the triangle’s Dirichlet to Neumann boundary operator. Subsequently,

any polygonal conductor can be modeled as a combination of triangles. The

method is especially useful to investigate current crowding effects near sharp

conductor corners. In a number of numerical examples, the accuracy of the

ICWM algorithm is investigated, and the method is applied to some polygonal

conductor configurations.
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4.1 Introduction

To adequately address broadband signal integrity for board and package level inter-

connections, fully fledged RLGC transmission models are required. For the highest

clock rates this is now also the case for on-chip interconnections as argued in [1]. The

influence of the finite conductivity of the conductors and the associated frequency

dependent skin effect losses and internal inductance (the so-called current crowding

phenomenon) has received considerable attention in literature, see e.g. [2] and [3] and

the many references in these papers. In [4] a single lossy line in the presence of a semi-

conducting substrate is analysed in the quasi-TM limit. The conductor losses can even

become dominant for narrow strip configurations [5]. In [6] this quasi-TM analysis is

extended to multiconductor lines in the presence of a semiconducting substrate.

To this end we introduced the Dirichlet to Neumann (DtN) operator [7] to capture

the current crowding phenomenon inside a good conductor. The frequency ranges

from DC to tens of GHz, at which point the skin-effect is fully developed and can be

described by the familiar scalar surface impedance Zs

Zs =
1 + j

σδ
(4.1)

with σ the conductivity, and δ the skin depth. The DtN operator is used to obtain a

surface admittance relationship Y(r, r′) between the longitudinal electric field ez(r
′)

and the differential surface current js(r), with r
′ and r on the circumference of the

conductor’s cross-section. To determine the per unit length inductance and resistance

of a particular transmission line configuration, it now suffices to replace the conductors

by their equivalent differential surface currents placed in the background medium.

These differential, or so-called ‘equivalent’ surface currents are determined such, that

they exactly give rise to the original fields outside the conductor when this conductor

is made transparent by replacing its material properties by those of the background

medium. Combining this with an integral equation solution for the fields generated

by these currents, directly leads to the desired L and R matrices. In the quasi-TM

approximation this approach can be extended to the determination of the capacitance

and conductance matrices C and G by again invoking the DtN operator but now to

obtain a relationship between the potential φ on the circumference of each dielectric

and semiconductor, and its normal derivative ∂φ/∂n. Invoking an integral equation

for the potential as a function of the equivalent surface charges in combination with

this relationship between φ and ∂φ/∂n, and by exciting the conductors’ boundaries

with a constant potential, allows for a determination of C and G as demonstrated in [6]

for coupled lines in the presence of semiconducting media.

Although the DtN operator theory can in principle be applied to conductors with

an arbitrary cross-section, its practical application remained restricted to a rectangu-

lar cross-section. This is due to the fact that the analytical determination of the DtN
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operator was based on its expansion in terms of the Dirichlet eigenfunctions. These

functions are only known for the rectangle and the circle and because at least a few

thousands of them are needed for a correct broadband analysis, their numerical de-

termination for other shapes is excluded. However, more complex conductor shapes,

provided they are formed by combining rectangles, can be handled as demonstrated

in [8] and [9], e.g., to examine the effect of layered on-chip conductors.

Effects such as underetching or electrolytical growth in the integrated circuit man-

ufacturing process, lead to conductors that are trapezoidal rather than rectangular.

In [10], such lines are investigated using a combination of the Finite Element Method

(FEM) and theMethod of Lines (MoL). To investigate trapezoidal conductors, or more

generally, the influence of sharp or obtuse conductor corners on the current crowding,

by means of the fast boundary integral equation method presented in [6], the knowl-

edge of the DtN operator for a triangular cross-section is of paramount importance.

Combining triangular cross-sections with rectangular ones, as in [9] for rectangular

cross-sections, then allows one to approximate almost any cross-sectional shape.

In section 4.2 and 4.3 the DtN operator for the triangle is determined by a new

method not depending on the Dirichlet eigenfunctions. As argued and demonstrated

in [6] and [7], for piecewise homogeneous media, the use of the DtN operator allows

to reformulate the complete problem in terms of a set of coupled boundary integral

equations only requiring the discretization of the unknowns on the boundaries of the

different subdomains. The use of the proper Green’s functions for each subdomain,

leads to the additional advantage that the skin-effect can be captured in a very accurate

way.

First, the ez field on the circumference of the triangle is discretized, e.g., by using

piecewise constant or linear basis functions. Inside the triangle ez satisfies the diffu-

sion equation. Next, we choose to expand ez inside the triangle in terms of three sets of

parallel-plate waveguide modes, each set with one of the triangle’s sides as the waveg-

uide’s height. In theory using only a single complete set of parallel-plate waveguide

modes would suffice, but the extra waveguide modes are introduced to avoid numeri-

cal inaccuracies as will be carefully substantiated at the end of Section 4.2.1. This in

turn leads to a numerically very stable determination of the normal derivative of ez on

the circumference, as a function of its original discretized representation.

In section 4.4, some numerical examples demonstrate the accuracy of the method

and the convergence properties of the iterative process to determine the DtN operator.

Furthermore, the resistance of a single conductor composed of triangles is determined

for different conductor shapes. For a rectangle, results are compared with data avail-

able in literature. Next, the resistive and inductive properties of a multiconductor line

with trapezoidal conductors are investigated and compared to the rectangular conduc-

tor case. Finally, a coplanar waveguide above a non-planar substrate is simulated and

its characteristic impedance is compared with reference data.
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4.2 Determination of the DtN Operator in a Triangle

As introduced in [7] and further elaborated in [6], the required relationship between

ez on a triangle’s boundary c and the differential surface current js is given by

js(r) =
1

jωµ0

(∂ez(r)

∂n
− ∂ez,0(r)

∂n

)

, r ∈ c (4.2)

=
1

jωµ0

∮

c

(

D(r, r′) −D0(r, r
′)

)

ez(r
′) dc(r′) (4.3)

with (D − D0) the differential DtN operator. The actual electric field ez and the fic-

titious field ez,0 have the same boundary value on c, but inside triangle T , ez satisfies

the diffusion equation, whereas ez,0 satisfies Laplace’s equation

∇2
t ez(r) = jωµ0σ ez(r), r ∈ T (4.4)

∇2
t ez,0(r) = 0, r ∈ T (4.5)

as dictated by the quasi-TM approximations [6]. For a rectangular area, (4.3) was

discretized by means of the Dirichlet expansion of (ez − ez,0), which is zero on the

boundary c.

For the complex capacitance problem C + G/jω, the required relationship be-

tween the equivalent surface charge ρs and the electric potential φc on the boundary

of dielectrics and semiconductors is given by

ρs(r) = (ǫ− ǫ0 + σ/jω)
∂φ(r)

∂n
, r ∈ c (4.6)

= (ǫ− ǫ0 + σ/jω)

∮

c

D(r, r′)φ(r′) dc(r′) (4.7)

in which φ satisfies the diffusion equation in the semiconductors, and Laplace’s equa-

tion in the dielectrics. The discretization of (4.7) requires the determination of the

non-differentialDtN operatorD. Because a Dirichlet expansion cannot be used to rep-
resent a non-zero boundary function, an alternative expansion was used to discretize

(4.7) on a rectangle [11], based on the superposition of the modal fields that exist in

two perpendicular parallel-plate waveguides. A similar approach will be used here,

but the contributions from the three parallel-plate waveguides, each perpendicular to

one of the sides of the triangle, will interfere with one another, which was not the case

for the rectangle.

The algorithm introduced in this paper will lead to the DtN matrix D, the dis-

cretized form of the non-differential operator D, defined for triangle T with bound-
ary c by

∂ψ(r)

∂n
=

∮

c

D(r, r′)ψ(r′) dc(r′), r ∈ c (4.8)
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T
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c2c3

ψ(1):

ψ(2)
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modal
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xx1 x00

y
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0
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Figure 4.1: Triangle T , with corners {pi} and sides {ci} (i = 1, 2, 3), placed in a cartesian
coordinate system with origin O and axes (x, y), and with a schematic indication of the way ψ
on T is split up into ψ(1), ψ(2), and ψ(3), according to parallel-plate waveguide modes in three

directions.

for ψ satisfying

∇2
tψ(r) = −k2 ψ(r), r ∈ T. (4.9)

4.2.1 Geometry of the Problem and Expansion of ez

Consider triangle T , shown in Fig. 4.1, defined by its corner points p1(0, 0), p2(0, x0)

and p3(x1, y0). Along the sides c1, c2 and c3, we will use the normalized coordinate

s ranging from 0 to 1 in counter-clockwise direction along boundary c of triangle T ,

such that

c1 ↔ {x = s x0 , y = 0} (4.10)

c2 ↔ {x = x0 + s (x1 − x0) , y = s y0} (4.11)

c3 ↔ {x = (1 − s)x1 , y = (1 − s) y0} (4.12)

The outward pointing normal unit vectors on each side are needed in the sequel as

well. They are given by

u1 =

[

0,−1

]

, u2 =

[

y0
l2
,
x0 − x1

l2

]

, u3 =

[

− y0
l3
,
x1

l3

]

(4.13)

with l1, l2 and l3 the lengths of the respective sides.
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The function ψ(x, y) inside T is split up into three subfunctions

ψ(x, y) = ψ(1)(x, y) + ψ(2)(x, y) + ψ(3)(x, y) (4.14)

with

ψ(1)(x, y) =

N1
∑

n=1

Ac1,n fc1,n(x, y) (4.15)

ψ(2)(x, y) =

N2
∑

n=1

Ac2,n fc2,n(x, y) (4.16)

ψ(3)(x, y) =

N3
∑

n=1

Ac3,n fc3,n(x, y) (4.17)

The functions fc1,n(x, y) are given by

fc1,n(x, y) =
(

ejβny − e−jβn(y−2y0)
)

sin
nπx

x0
(4.18)

with β2
n = k2 − (nπ/x0)

2 and its square root βn chosen such, that Re(jβn) < 0.

The upper limit N1 in (4.15) is the number of sine functions used to expand the x-

dependence of ψ(1).

The function ψ(1) can, with (4.15) and (4.18), be seen as an expansion of a longi-

tudinal electric field into the eigenmodes of a parallel-plate waveguide, filled with the

medium with wave number k and directed vertically with the plates through corners

p1 and p2 of triangle T . The y-dependence in (4.18) is the exact solution to (4.9) for

each term in the sine expansion along x, and is chosen such, that its contribution at

y = y0 (and hence at p3) becomes zero.

The functions fc2,n(x, y) and fc3,n(x, y) can be written in a similar way, but it

is unnecessary to explicitly write them down in the same coordinate system used for

fc1,n(x, y). Instead, a different set of axes is associated with each side ci of the trian-

gle. It has corner pi as its origin, and side ci as its x-axis. The same triangle in three

different orientations and for each of these coordinate systems, is shown in Fig. 4.2.

By this judicious choice of the axes, we only need (4.18) to express the contri-

butions of the parallel-plate waveguides associated wich sides c2 and c3, in the sense

that

fc2,n(x, y) = f ′
c1,n(x′, y′) (4.19)

fc3,n(x, y) = f ′′
c1,n(x′′, y′′) (4.20)

This means that, e.g., for fc2,n(x, y), the same form as (4.18) is used, but with x, y,

x0, x1, y0 replaced by x
′, y′, x′0, x

′
1, y

′
0, and with N

′
1 = N2 terms in the expansion
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Figure 4.2: Three different axes sets, each associated with a different orientation of triangle T .
(a) unprimed, with c1 underneath, (b) primed, with c2 underneath (c

′
1 = c2, c

′
2 = c3, c

′
3 = c1),

(c) double primed, with c3 underneath (c
′′
1 = c3, c

′′
2 = c1, c

′′
3 = c2).

of ψ(2).

The sine expansion {sin (nπx/x0)} in (4.18) for ψ(1) forms (theoretically, for

N1 → ∞) a complete set on c1, except for the corner points where all sine functions
are zero. This problem and some related issues will be addressed in Section 4.3. An

analogous argumentation is valid for ψ(2) and ψ(3). Due to the specific form of (4.15)

and (4.18), with a single multiplicative degree of freedom for each basis function

fc1,n (its coefficient Ac1,n), ψ
(1) is fully determined over the complete triangle, once

its boundary value on c1 is fixed, and so are ψ
(2) for side c2 and ψ

(3) for c3. It would,

alternatively, be possible to determine the coefficients Ãc1,n and B̃c1,n of only one

complete set of waveguide modes, written as

ψ̃(x, y) =

N1
∑

n=1

(

Ãc1,ne
jβny − B̃c1,ne

−jβny
)

sin
nπx

x0
(4.21)

and such that ψ̃, taking the place ofψ in (4.14), satisfies prescribed boundary values on

c1, c2 and c3 (in principle this is only true for N1 → ∞). However, our method uses
the combination of three sets of expansion functions, which are, on their own, only

sufficient to represent a prescribed boundary value on one of the sides, but altogether
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on the three sides. Although the introduction of two extra sets of waveguide modes

is at first glance unnecessary, our method has the advantage that we can enforce ψ(1)

to be zero at p3, in this way avoiding the exponential terms in (4.18) to become large

(and analogously for ψ(2) and ψ(3)). If, instead, (4.21) would be used, the exponential

behavior of the parallel-plate waveguide modes in the direction perpendicular to c1
would lead to ill-conditioning and completely inaccurate results.

As for each boundary excitation there exists a unique solution for the expansion

coefficients Aci,n, it should be possible to construct a set of equations that can be

solved directly for these coefficients. This procedure needs to be repeated as many

times as there are discretization segments, and would lead to very long calculations.

Therefore, the authors have opted for an iterative approach to determine the unknown

entries of the DtN matrix. This method has two major advantages. First of all, it is

possible to construct a very good initial guess to start the iteration (assuming at first

there is no interaction between the sides), and furthermore, the iterative method has

an exponential convergence behavior (as explained in the sequel), which leads to an

accurate solution within a very limited number of iteration steps.

4.2.2 Discretization of ψc and Iterative Procedure

The following paragraphs describe the iterative prodedure to determine the expansion

coefficientsAci,n of (4.14-4.17), which in the sequel will be called the Iterative Com-

bined Waveguide Modes (ICWM) algorithm. Before giving some more mathematical

details, we start with a brief physical description of the method. On each side, the un-

known function ψ is first expanded in a set of non-uniform basis functions, typically

pulses or hat functions. The complex amplitudes of these functions are collected in a

column vector Ψc. Next, this representation is recast in the form (4.15-4.18) neces-

sitating the introduction of a mapping matrix W between Ψc and the A-coeffcients

in (4.15-4.17) collected in the column vector A. To be able to determine W, three

additional matrix operations are needed, i.e. Q, D and P. D and Q transform the orig-

inal basis expansion on each side into Fourier series expansions. Then P matrices are

defined that project the Fourier series coefficients from one side of the triangle onto

another side. These matrices account for the “overlap”, i.e. for the way in which the

three sets of parallel-plate waveguide modes influence each other. For a better readi-

bility of this text, the explicit form of several of these matrices is not given, but can be

found in the Appendix.

The proposed method is based on improving an initial guess for the expansion co-

efficients, by cycling through the sides until the required accuracy is reached. Suppose

we start from side c1. The expansion of ψc1
in sine functions yields a first approx-

imation ψ(1),〈1〉 for ψ(1). The notation 〈n〉 will be used to denote a certain value
after iteration cycle n. Subtracting the contribution of ψ(1),〈1〉 on c2 from the actual

boundary value ψc2
, and expanding this result in sines, i.e., calculating the coeffi-
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cients {A〈1〉
c2

}, yields ψ(2),〈1〉. For the third side, the contributions of both ψ(1),〈1〉

and ψ(2),〈1〉 are subtracted from ψc3
, before expanding it into sines, yielding ψ(3),〈1〉.

This is the end of the first iteration cycle. From now on, both previous contributions

from the expansions on two of the sides to the third side are subtracted from the actual

boundary value, and the remainder is expanded into sines. In each iteration cycle,

the contribution of the three ψ(i),〈n〉 on each of the sides constitute a continually bet-

ter approximation of the actual boundary value ψci
. In Section 4.4, the convergence

properties of the method are numerically illustrated. We now first go into some of the

mathematical details.

In order to discretize the function ψ on side c1, the side is divided into segments,

using a number of discretization points xm, (m = 1, . . . ,M1 +1), with x1 and xM1+1

the corner points. A uniform distribution of these points along the sides is not required.

They can be chosen at will, so as to assure an optimal representation of the continuous

function ψc1
. The normalized discretization points sm on side c1 are defined by xm =

sml1, and analogously on the other sides. With these, we get for side ci (with i =

1, 2, 3)

ψci
(s) ≃

Mi
∑

m=1

Ψci,m tci,m(s), 0 ≤ s ≤ 1. (4.22)

The functions tci,m(s), with m = 1, . . . ,Mi, can be a constant pulse on the interval

[sm, sm+1] (corresponding, e.g on c1, to x ∈ [xm, xm+1]), a piecewise linear ‘hat’

function on [sm−1, sm+1], or any other basis function.

The coefficientsΨci,m are taken together into one column vectorΨc as

Ψc =





Ψc1

Ψc2

Ψc3



 (4.23)

in which [Ψci
]m = Ψci,m. The expansion coefficients Aci,n from (4.15-4.17) are

taken together into column vectors Aci
. The purpose of the ICWM algorithm is the

determination of the Ni ×M matricesWci
(withM = M1 +M2 +M3), defined by

Aci
= Wci

Ψc. (4.24)

Once these matrices are known, the expansion (4.14-4.17) is fully determined for any

boundary function ψc, and ∂ψ/∂n can be determined from the normal derivative of

the functions fc1,n, fc2,n, and fc3,n.

In order to calculate the matrices Wci
, two different types of interactions have to

be worked out. On the one hand, we need to transform the coefficients of a discretized

function on ci into its sine expansion. On the other hand, we need to determine the

expansion coefficients that result from expanding subfunction ψ(j), but evaluated on

side ci (i 6= j), into sines on side ci.
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In order to simplify the notations used in the sequel, some auxiliary functions are

defined here, related to the evaluation of fc1
(x, y) and its derivatives on sides c2 and

c3.

γ−n (s)
def
=

(

ejβny0(1−s) − ejβny0(1+s)
)

(4.25)

γ+
n (s)

def
=

(

ejβny0(1−s) + ejβny0(1+s)
)

(4.26)

ζ2,n(s)
def
=

nπ

x0

(

x0 + s (x1 − x0)
)

(4.27)

ζ3,n(s)
def
=

nπ

x0

(

(1 − s)x1

)

(4.28)

These functions will be used frequently in the sequel, without each time referring to

(4.25-4.28), though. For example, ψ(1) evaluated on c3 can now be compactly written

as

ψ(1)
c3

(s) =

N1
∑

n=1

Ac1,n γ
−
n (s) sin ζ3,n(s). (4.29)

First, the transformation matrices Qi and the scaling matricesDi are defined. They

transform the coefficients Ψ
(i)
ci,m, with the superscript (i) indicating the contribution

of ψ(i) only, into its sine expansion coefficients Aci
. The expansion of ψ(1) on side

c1,

ψ(1)
c1

(s) ≃
M1
∑

m=1

Ψ(1)
c1,m tc1,m(s) (4.30)

≃
N1
∑

n=1

Ac1,n γ
−
n (1) sinnπs, (4.31)

is weighted with the set {2 sinnπs, n=1, . . . , N1}. Taking the coefficients together
in the vectorsΨ

(1)
c1
and Ac1

, leads to

Q1 Ψ
(1)
c1

= D1
−1

Ac1
(4.32)

with the explicit form of theN1×M1 matrix Q1 and theN1×N1 diagonal matrix D1

given in the Appendix.

For the other sides c2 and c3, the primed and double primed quantities can be used,

as indicated in (4.19) and (4.20). We schematically write this as

Q2 = Q′
1, D2 = D′

1, (4.33)

Q3 = Q′′
1 , D3 = D′′

1 . (4.34)

The expansion matrices Pij are used to calculate the coefficients C
(j)
ci,n in the sine
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expansion on ci of subfunctionψ
(j), defined by its coefficientsAcj ,n. Evaluating ψ

(1)

on c2 and on c3 and expanding it into sines on these sides, yields, with (4.11), (4.12),

(4.15) and (4.18),

ψ(1)
c2

(s) ≃
N2
∑

n2=1

C(1)
c2,n2

sinn2πs (4.35)

≃
N1
∑

n1=1

Ac1,n1
γ−n1

(1 − s) sin ζ2,n1
(s) (4.36)

ψ(1)
c3

(s) ≃
N3
∑

n3=1

C(1)
c3,n3

sinn3πs (4.37)

≃
N1
∑

n1=1

Ac1,n1
γ−n1

(s) sin ζ3,n1
(s). (4.38)

Weighting (4.35) and (4.36) with the set {2 sinn2πs}, and (4.37) and (4.38) with the
set {2 sinn3πs}, yields

C(1)
c2

= P21 Ac1
(4.39)

C(1)
c3

= P31 Ac1
(4.40)

with the N2 ×N1 matrix P21 and the N3 ×N1 matrix P31 specified in the Appendix.

Performing the same operations for the rotated geometries shown in Fig. 4.2 (b)

and (c), leads to the other required matrices

P12 = P
′
31, P32 = P

′
21 (4.41)

P13 = P′′
21, P23 = P′′

31. (4.42)

The ICWM procedure as outlined above is an iterative procedure to determine the

Wci
matrices. Initially, all three matrices are supposed zero. We now describe cycle n

of the iteration. Suppose after n − 1 iteration cycles, we want to determine the coef-

ficients A
〈n〉
c1
from A

〈n−1〉
c2

and A
〈n−1〉
c3

. Evaluation of (4.14) with the l.h.s. discretized

using (4.22), evaluated on c1 with (4.10), and with the insertion of expansion (4.15)

and (4.18), gives

M1
∑

m=1

Ψc1,m tc1,m(s) −
(

ψ(2),〈n−1〉
c1

+ ψ(3),〈n−1〉
c1

)

=

N1
∑

n=1

A〈n〉
c1,n γ

−
n (1) sinnπs. (4.43)
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Weighting (4.43) with the set {2 sinnπs} yields

Q1 Ψc1
−

(

C
(2),〈n−1〉
c1

+ C
(3),〈n−1〉
c1

)

= D1
−1

A
〈n〉
c1
. (4.44)

The analogous relationships as (4.39), but involving P12 and P13, allow to write (4.44)

as

A
〈n〉
c1

= D1

(

Q1 Ψc1
− P12 A

〈n−1〉
c2

− P13 A
〈n−1〉
c3

)

. (4.45)

Define the matrix

Q̃1 =
[

Q1 , 0N1×M2
, 0N1×M3

]

, (4.46)

using the notation 0Ni×Mj
for aNi×Mj zero matrix. Inserting the relationships (4.24)

leads from (4.45) to

W
〈n〉
c1

= D1

(

Q̃1 − P12 W
〈n−1〉
c2

− P13 W
〈n−1〉
c3

)

. (4.47)

Analogous calculations show that

W〈n〉
c2

= D2

(

Q̃2 − P21 W〈n〉
c1

− P23 W〈n−1〉
c3

)

(4.48)

W〈n〉
c3

= D3

(

Q̃3 − P31 W〈n〉
c1

− P32 W〈n〉
c2

)

(4.49)

with

D2 = D
′
1, Q̃2 =

[

0N2×M1
, Q2 , 0N2×M3

]

(4.50)

D3 = D
′′
1 , Q̃3 =

[

0N3×M1
, 0N3×M2

, Q3

]

. (4.51)

The update equations (4.47), (4.48) and (4.49) form the core of the n’th iteration cycle

of the ICWM procedure.

4.2.3 Normal Derivative Calculation

The outward pointing normal derivative ∂ψc/∂n is discretized on side i as

∂ψci
(s)

∂n
≃

Mi
∑

m=1

Γci,m tci,m(s). (4.52)

The purpose is to determine the Γci,m coefficients, taken together per side i into the

vector Γci
, such that

Γci
=

3
∑

j=1

Γ(j)
ci

=

3
∑

j=1

Tij Acj
(4.53)

in which Γ
(j)
ci
contains the coefficients Γ

(j)
ci in the contribution from ψ(j) to the total

normal derivative on ci. Hence, with (4.24) and by grouping the vectors Γci
into Γc,
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we find

Γc = D Ψc (4.54)

with

D =





T11 Wc1
+ T12 Wc2

+ T13 Wc3

T21 Wc1
+ T22 Wc2

+ T23 Wc3

T31 Wc1
+ T32 Wc2

+ T33 Wc3



 (4.55)

which is the discretized form of (4.8), i.e., the matrix-representation of the DtN op-

erator, mapping ψc onto ∂ψc/∂n. The matrices Tij are determined by calculating the

outward normal derivative of ψ(j) on side ci, and weighting the result with the basis

functions tci
(s) along that side. On c1, ∂ψ

(1)/∂n is written as

∂ψ
(1)
c1

(s)

∂n
≃

M1
∑

m=1

Γ(1)
c1,m tc1,m(s) (4.56)

≃ −
N1
∑

n=1

Ac1,n jβn γ
+
n (1) sinnπs (4.57)

and leads to

Γ
(1)
c1

= T11 Ac1
. (4.58)

On c2, the normal derivative of ψ
(1) becomes, with (4.13),

∂ψ
(1)
c2

(s)

∂n
= u2 ·

[

∇ψ(1)
]

c2

(4.59)

≃
M2
∑

m=1

Γ(1)
c2,m tc2,m(s) (4.60)

≃
N1
∑

n=1

Ac1,n

(

y0
l2
γ−n (1 − s)

nπ

x0
cos ζ2,n(s)

+
x0 − x1

l2
jβn γ

+
n (1 − s) sin ζ2,n(s)

)

. (4.61)

Weighting (4.60) and (4.61) with the basis functions tc2,m(s) on c2 leads to

Γ(1)
c2

= T21 Ac1
. (4.62)
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Analogously, ∂ψ
(1)
c3
/∂n becomes

∂ψ
(1)
c3

(s)

∂n
= u3 ·

[

∇ψ(1)
]

c3

(4.63)

≃
M3
∑

m=1

Γ(1)
c3,m tc3,m(s) (4.64)

≃
N1
∑

n=1

Ac1,n

(

− y0
l3
γ−n (s)

nπ

x0
cos ζ3,n(s)

+
x1

l3
jβn γ

+
n (s) sin ζ3,n(s)

)

(4.65)

and leads to

Γ(1)
c3

= T31 Ac1
. (4.66)

TheMi×N1 matricesTi1 are defined in the Appendix. For the remainingTij matrices,

we can immediately write

T12 = T′
31, T22 = T′

11, T32 = T′
21 (4.67)

T13 = T
′′
21, T23 = T

′′
31, T33 = T

′′
11. (4.68)

4.3 Elimination of the Gibbs Effect

For the non-differential DtN operator as defined by (4.8), the Gibbs phenomena at the

corners of the triangle are considerable, due to the expansion functions fci,n which

are zero in the corner points, and hence not apt to represent a non-zero corner value.

As will become clear in Section 4.4 from the numerical data, this Gibbs phe-

nomenon corrupts the solution along the complete boundary. An accurate elimination

of the Gibbs effect is therefore required for an arbitrary value of k2. The solution

for the Gibbs effect presented in [11] for a rectangular cross-section, only deals with

k2 = 0. Below, a generalization is presented. This generalization is only valid pro-

vided the boundary value of ψc is continuous, but this is indeed the case, both for the

scalar electric potential and for the longitudinal electric field.

The DtN operator (4.55) is only correct provided all corner values are zero. A

function satisfying this requirement is obtained by subtracting from ψ three analyti-

cally known functions ψ̂pi , that satisfy (4.9), have a non-zero corner value at pi, and

are zero on the other corners. We start at corner p1. The proposed function ψ̂
p1 is

defined by

ψ̂p1(x, y) = α̂p1 cos
πx

2x0

(

ejβ̂y − ejβ̂(2y0−y)
)

, (4.69)

with β̂2 = k2 − (π/2x0)
2. It reaches its maximal amplitude at p1, and is, as required,
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zero at p2 and p3. Analogous functions are defined, associated with p2 and p3. We

now have to determine a matrix D̂p1 , which transforms Ψc into the normal derivative

of ψ̂p1 , with a correctly determined coefficient α̂p1 . Secondly, a matrix R̂p1 is needed,

to reduce the original boundary coefficients Ψc to those without the contribution of

ψ̂p1 . The same argumentation can be followed to treat corners p2 and p3, with the

introduction of analogous matrices. This results in

Γc = DtotΨc (4.70)

with

Dtot =
(

D R̂p3 R̂p2 R̂p1 + D̂p3 R̂p2 R̂p1 + D̂p2 R̂p1 + D̂p1

)

(4.71)

Compared to the original discretized form D (4.55) of the DtN operator, Dtot is its

modified form which does no longer suffer from the Gibbs phenomenon. The expres-

sions for D̂pi and R̂pi (i = 1, 2, 3) can be found in the Appendix.

4.4 Numerical Results

A few numerical simulations are presented, to investigate the convergence and ac-

curacy properties of the method, including an illustration of the effectiveness of the

Gibbs phenomenon elimination as described in Section 4.3. In a few further exam-

ples, the inductive and resistive behavior of trapezoidal conductors is investigated.

All simulations were done with a uniform, piecewise constant approximation of the

longitudinal electric field on the triangles, except for the last one, where we used a

piecewise linear discretization on the boundaries.

4.4.1 Numerical Accuracy and Convergence Properties

In order to illustrate the effectiveness of the method described in Section 4.3 to elim-

inate the Gibbs effect at the triangles’ corners, we compare the normal derivative

∂ψ/∂n of a function ψ(x, y), along the boundary of a triangle T1 without and with

the use of the correction formula (4.71) instead of (4.55).

Triangle T1 is shown in the inset of Fig. 4.3 (a), and has side lengths of, respec-

tively, c1 = 4 mm and c2 = c3 = 2.5 mm. The boundary value ψc is chosen to be

continuous along its boundary, and linear on each side, with corner values ψp1
= 0,

ψp2
= −1, and ψp3

= 1. For a high resolution of the displayed results along the

boundary, the number of discretization intervals is chosen to be 300 along c1, and

188 along c2 and c3. Obviously, for most applications the results will be accurate

enough with a coarser discretization. The number of sine functions used along each

side amounts to 400 along c1, and 250 along c2 and c3.
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Fig. 4.3 (a) displays the results for the dielectric case (neglecting the displacement

currents in the quasi-TM case), with ψ satisfying Laplace’s equation in T1. Without

the Gibbs effect compensation, i.e., using only (4.55), the oscillations are huge and

not even restricted to the corner areas. Note that corner p1 does not introduce any

Gibbs effect, because ψc is exactly zero at p1. With (4.71), the numerical result is

almost indistinguishable from the exact ∂ψ/∂n, namely −1000 on c1, 650 on c2 and

950 on c3. An analogous comparison is made in Fig. 4.3 (b), for the same boundary

value ψc, but with ψ satisfying the diffusion equation (4.4) in T1, for a conductivity

σ = 57.2 MS/m and at 100 kHz. The Gibbs effect is especially strong near the corners

now, but again totally eliminated by using (4.71).

A peculiarity of the results in Fig. 4.3 (b) is the behavior near the corners. This

is worth some additional comments, given its general validity and importance for

the high-frequency current distribution near an edge. At 100 kHz, the skin depth

δ ≈ 0.21 mm. Based on a local plane wave approximation, ψ will be exponentially

damped, proportional to e−n/δ, with n the coordinate in the normal direction n from a

boundary point p towards the inside of the triangle. This approximation does not hold,

if the distance along n to the opposite side is smaller than a few times the skin depth.

If, e.g., p lays on c1 at a distance δ/2 from the corner point p2, then the distance from

p to the adjacent side c2 (in the normal direction with respect to c1) is 3 δ/8 (for a

corner of 36.9◦). If p starts to approach p2 even closer, the diffusion term no longer

plays a role, and we should therefore get the same result as in Fig. 4.3 (a). The bound-

ary interval of length δ centered around p2 is indicated by the dashed vertical lines in

Fig. 4.3 (b). The normal derivative ∂ψ/∂n in this interval is indeed very similar to the

corresponding solution of Fig. 4.3 (a), indicated in dash-dot lines. This phenomenon

is clearly visible for the sharp corners p1 and p2. For the obtuse corner p3 however,

this is not the case. The reason for that is, that for any boundary point p close to p3,

the diffusion term still plays a role, because in the normal direction, the adjacent side

is not reached, let alone that this distance becomes≪ δ near the corner1.

In a second numerical experiment, the convergence of the iterative method is in-

vestigated. As explained in Section 4.2.3, the normal derivative ∂ψ/∂n is determined

analytically from the expansion of ψ itself. The correctness of ∂ψ/∂n is hence limited

by the accuracy of the expansion of ψ in T1 and more specifically on its boundary, as

each term in the expansion exactly satisfies the governing equation (4.9) inside T1.

Therefore, it is investigated how the boundary value ψ
(n)
c of the expansion after n it-

eration steps becomes a better approximation of the exact ψc for increasing n. Again

consider the functionψ(x, y) over triangle T1, but nowwith a constant boundary value

ψc = ψ0. Fig. 4.4 displays the relative error of ψ
〈n〉
c with respect to ψ0, for (a) ψ satis-

fying Laplace’s equation, and (b) the diffusion equation, as in Fig. 4.3. As for ∂ψ/∂n,

1This imporant phenomenon plays a major role in the so-called edge effect, which has a noticeable

influence on the circuit characteristics of the considered lines. The edge effect is therefore investigated in

detail in Chapter 5, on the one hand by means of a series expansion of the fields near a wedge, and on the

other hand, using the ICWM algorithm.
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Figure 4.3: Normal derivative ∂ψ/∂n along the boundary of triangle T1 (see inset of (a), c1 =
4mm, c2 = c3 = 2.5 mm) both without and with elimination of the Gibbs effect, for ψ linear
along the sides of T1, and with ψp1

= 0, ψp2
= −1, ψp3

= 1. The simulations were performed
at 100 kHz, for (a) T1 as a dielectric, and (b) T1 as a conductor with σ = 57.2 MS/m, with
only Re(∂ψ/∂n) shown.

the Gibbs effect in the calculation of ψc is taken care of by subtracting an analytical

part with the same corner values as ψc, and then using the matricesW
〈n〉
c1
,W

〈n〉
c2
, and

W
〈n〉
c3
to calculate the expansion coefficients for the sine expansions on each side of

the remaining part of ψ, which now has zero corner values.

It is clearly visible in both Fig. 4.4 (a) and (b) that the error rapidly decreases

with each iteration step. After a certain number of iteration steps (about 8 in this

case, and earlier on side c2 and c3), the relative error will no longer further decrease

(but is already much smaller than 1/1000). This is not due to the limited accuracy

of the expansion coefficients, as will be shown in a further numerical experiment. It

is caused by the limited accuracy in the estimation of the corner values of ψ, that are

further processed for Gibbs effect elimination.

The convergence behavior of the iterative procedure to find the expansion of ψ

depends much stronger on the triangle’s shape than on the diffusion coefficient k2 in

(4.9). It is expected that the scheme converges slower, the sharper a corner of the

triangle becomes, due to the increased interaction between the corresponding adjacent

sides. Consider the triangular conductor T2 (shown in the inset of Fig. 4.5), with

conductivity σ = 57.2 MS/m., and at 100 kHz. The area of the isosceles triangle T2

is kept to 1 mm2, whereas the top angle is varied from 60◦ to 3.75◦. The convergence

of matrix W
〈n〉
c2
is presented in Fig. 4.5 by means of the normalized Frobenius norm
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Figure 4.4: Relative error after n iterations, in the estimation ψ
〈n〉
c of a constant boundary value

ψc = ψ0, for triangle T1 (see Fig. 4.3 (a)). The simulations were performed at 100 kHz, for (a)

T1 as a dielectric, and (b) T1 as a conductor with σ = 57.2 MS/m.

of the difference between two consecutive matricesW
〈n−1〉
c2

andW
〈n〉
c2
, i.e., by

∥

∥

∥
W

〈n〉
c2

− W
〈n−1〉
c2

∥

∥

∥

∥

∥

∥
W

〈n〉
c2

∥

∥

∥

=

√

∑

i,j

∣

∣

∣

[

W
〈n〉
c2

]

i,j
−

[

W
〈n−1〉
c2

]

i,j

∣

∣

∣

2

√

∑

i,j

∣

∣

∣

[

W
〈n〉
c2

]

i,j

∣

∣

∣

2
(4.72)

For α = 60◦, the accuracy is only limited by the floating point precision within less

than 20 iteration steps. The smaller α becomes, the slower the iterative procedure

converges, but even for α = 3.75◦ the difference between steps n− 1 and n decreases

exponentially. In this example we used 228 parallel-plate waveguide modes per side.

After these convincing examples of the convergence behavior of the ICWM al-

gorithm, the authors would like to add a few comments to indicate that the scheme

will always converge. This is indeed the case, at least within the validity range of

the quasi-TM analysis. The reason is, that Re(jβn), with βn defined as for (4.18), is

strictly negative. The function fc1,n will consequently only have a small contribution

to sides c2 and c3, compared to its function value on c1. Generally speaking, a correc-

tion of the coefficients Aci,n of the functions fci,n of side ci will result in a smaller

required correction of the coefficients Acj ,n on the other sides cj (j 6= i), due to the

fact, mentioned above, that fci,n has only an exponentially small contribution on the

other sides cj (j 6= i). As this is true for all sides i = 1, 2, 3, the iterative procedure
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Figure 4.5: Convergence behavior of matrixW
〈n〉
c2 as a function of the number of iteration steps

n for the isosceles triangle T2 with surface 1mm2 (see inset). Simulations were performed at

100 kHz and with σ = 57.2 MS/m.

can be expected to converge exponentially and this is what is indeed observed numer-

ically. This explains why, even within the first iteration cycle n = 1 on Fig. 4.4, the

approximation of ψ on the boundary will be better on side c3 than on side c2, which

in turn is better than on c1.

A more rigorous convergence analysis could be carried out by investigating the

behavior of the matrices Pij, or by considering the contribution of one expansion func-

tion fc1,n on sides c2 and c3, for the case of the highest possible coupling with side

c1 (in other words, for the slowest exponential decrease of fc1,n). This ‘worst case

scenario’ is found for the first order mode fc1,1, for a dielectric material (with k
2 = 0

within the quasi-TM approximation), and for sharp corners adjacent to c1. Even if the

exponential decline is slow and can be approximated by a linear function, the contribu-

tion of fc1,1 to c2 and c3 will still remain small enough to ensure a good convergence,

because its function value is forced to zero on p3.

4.4.2 Characterization of a Single Conductor

As a verification of the surface admittance matrix for triangles, the p.u.l. resistance

of a square copper conductor composed of two triangles is simulated, and compared

to data available in literature [7]. The conductor is placed in free space, and has a

side length of 4.62 mm and a conductivity σ = 57.2 MS/m. The result is shown in

Fig. 4.6. Exactly the same resistance is obtained with the square conductor composed

of two triangles, as the result from [7], determined with the surface admittance matrix

of the square. To investigate the influence of the conductor’s shape, the resistance of a
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Figure 4.6: Resistance (mΩ/m)) for a square copper conductor (s = 4.62 mm, σ =
57.2 MS/m) formed by two triangles (solid line) vs. the result from [7] (in x-markers), and
compared to a trapezoid (dashed line) and a triangle (dash-dot line) with the same area.

trapezoid (composed of two triangles, shown in the legend of Fig. 4.6) and a triangular

conductor are shown in Fig. 4.6 as well. All conductors have the same area, and hence

exactly the same low-frequency resistance. At 10 kHz, the skin depth δ in copper is

about 0.665 mm, and the major part of the current flows within a layer with thickness

δ underneath the surface. One would therefore expect a resistance, roughly inversely

proportional to the circumference, but this is not yet the case within the investigated

frequency range. The trapzoid’s circumference L = (2 +
√

5)s is higher than the

square’s (L = 4s), yet the latter one has the lowest high-frequency resistance. A

similar effect is noticeable for the triangular conductor, with L = (2 +
√

8)s and a

still higher resistance. The reason is that the effective length of the skin layer where the

current flows, is shortened due to the corner effect at the sharp corners. It is expected

that at still higher frequencies, the corner effect becomes less pronounced. A fully

detailed investigation of the field behavior at the corners is investigated in the next

chapter.

4.4.3 Multiconductor Line with Trapezoidal Conductors

In a next numerical example, the inductive and resistive characteristics of a multi-

conductor line are investigated. The purpose is to get a better understanding of the

(coupling) behavior of trapezoidal conductors, rather than to simulate a more realistic

structure, with a substrate. The structure under investigation is shown in Fig. 4.7 and

consists of two line pairs (1 − 2 and 3 − 4), with an opposite orientation with respect

to the nearby perfect electric conducting (PEC) ground plane. All conductors have the
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Figure 4.7: Structure with 4 trapezoidal copper conductors (σ = 57.2 MS/m) above a PEC
ground plane (shown on scale). Dimensions areB = 1.5, b = 0.9, h = 0.3,∆ = 0.3, d = 2.4,
D = 4, andH = 1.5, all in millimetres.

conductivity of copper, σ = 57.2 MS/m, and the dimensions are indicated in Fig. 4.7.

The resistance matrix R and the inductance matrix L of the structure are deter-

mined over a frequency range from 1 kHz (at with the skin depth δ ≈ 2 mm), up to

100 MHz (where δ ≈ 0.0067 mm). The configuration of Fig. 4.7 is compared to an

analogous configuration with rectangular conductors with the same area (with height

h, width (b + B)/2, separated by the same distances d, resp. D, and on the same

heightH above the ground plane). The results for the trapezoidal conductors are pre-

sented in Fig. 4.8 with full lines, whereas dashed lines are used for the rectangular

conductor case. resistance- and inductance-values pertaining to the rectangular case

will be denoted by R̂ and L̂.

Fig. 4.8 (a) displays the self inductance elements L11, L̂11, L44 and L̂44, and

the resistance elements R11, R̂11, R44 and R̂44. At the lowest frequencies, there

is no difference between the resistance elements (as all conductors have the same

area), but towards the higher frequencies, the trapezoidal conductors display a higher

resistance, in accordance with the result from Fig. 4.6, except for the highest simulated

frequencies, for which the corner effect becomes negligible. The difference between

the self-inductance elements are the result of the detailed current distribution in the

conductors which are influenced by the corner behavior which is clearly different for

sharp and obtuse corners, by the position of these corners w.r.t. the ground plane,

and by the proximity effect of the corners. The inductance values for the respective

configurations but with perfect electric conductors, are indicated as well (with the

superscript PEC). A good convergence to this limit is observed for the high-frequency

inductance of the copper lines.

Fig. 4.8 (b) shows the inductive and resistive coupling between lines 1 and 2,

respectively, 3 and 4, again comparedwith the rectangular conductor case. The mutual

resistance elements are negative, but very small with respect to the resistance elements

shown in (a), such that the resistance matrix remains positive-definite. The mutual

inductance elements are important, due to the close vicinity of the conductors.
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Figure 4.8: Elements of the resistance matrix R and inductance matrix L for the configuration

of Fig. 4.7. Full lines, with trapezoidal conductors; dashed lines, with rectangular conductors.

(a) self-inductance and resistance, (b) coupling between the lines of each signal pair (1−2, and
3 − 4).

4.4.4 Micromachined Coplanar Waveguide

The final presented example treats the coplanar waveguide (CPW) structure shown in

Fig. 4.9. As a result of the etching process during the manufacturing of the CPW, the

silicon substrate material (ǫr = 11.7) is partly removed underneath the separation be-

tween the signal line and the reference conductors. The structure was taken from [10],

where it was simulated for PEC conductors. The characteristic impedance of the line
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Figure 4.9: Coplanar waveguide structure, enclosed by a PEC box (not shown on scale). The

dimensions are A = 320, B = 500, h = 300, w = 50, s = 45, t = 1, all in micrometers.
Furthermore, θ = 54.7◦ , ǫr = 11.7, and σCu = 57.2 MS/m.
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Figure 4.10: The characteristic impedance Zc of the structure shown in Fig. 4.9.

for the copper conductor case (σCu = 57.2 MS/m) is shown Fig. 4.10, and at the

highest frequencies approaches the PEC limit obtained from [10]. As claimed in the

Introduction, this example shows that the DtN operator combined with the integral

equation techniques of [6] can handle non-planar substrates including very thin con-

ducting slabs. The dashed lines shown on the substrate in Fig. 4.9 denote its division

in subregions for which the DtN operator is determined separately, i.e., 4 rectangles

and 3 triangles. Of course, it was also necessary to determine the DtN operator for the

three rectangular copper conductors.
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4.5 Conclusion

The presented Iterative Combined Waveguide Modes algorithm leads to the Dirich-

let to Neumann operator for an arbitrary triangle, which can be used to calculate the

multi-conductor transmission line parameters for polygonal conductor structures. The

iterative method has good convergence properties and is accurate over a broad fre-

quency range. As an illustration, the inductive and resistive behavior of trapezoidal

conductors is investigated in a few numerical examples.

Appendix

This Appendix displays the explicit forms of the relevant expansion matrices, in the

order of their introduction in Sections 4.2 and 4.3.

Submatrices Related to Expanding ψ over Triangle T

[

Q1

]

n,m
= 2

∫ 1

0

(

sinnπs
)

tc1,m(s) ds (4.73)

[

D1

]

n,n
=

(

γ−n (1)
)−1

(diagonal) (4.74)

[

P21

]

n2,n1

= − 4j
x0 − x1

x0

βn1

y0

n1π

y0

n2π

y0
(−1)n1

×
(

2 ejβn1
y0(−1)n1+n2 cos

(n1πx1

x0

)

− γ+
n1

(1)

)

×
(

( π

y0

)2 (

n2 + n1
x0 − x1

x0

)2

− β2
n1

)−1

×
(

( π

y0

)2 (

n2 − n1
x0 − x1

x0

)2

− β2
n1

)−1

(4.75)

[

P31

]

n3,n1

= − 4j
x1

x0

βn1

y0

n1π

y0

n3π

y0

×
(

2 ejβn1
y0 cos

(n1πx1

x0

)

− (−1)n3 γ+
n1

(1)

)

×
(

( π

y0

)2 (

n3 + n1
x1

x0

)2

− β2
n1

)−1

×
(

( π

y0

)2 (

n3 − n1
x1

x0

)2

− β2
n1

)−1

(4.76)
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Submatrices Related to ∂ψ/∂n

For the definition of T11, the auxiliary matrices B1 (M1 ×M1) and T̃11 (M1 ×N1)

are defined as

[

B1

]

m̃,m
=

∫ 1

0

tc1,m̃(s) tc1,m(s) ds (4.77)

[

T̃11

]

m̃,n
= −jβn γ

+
n (1)

∫ 1

0

(

sinnπs
)

tc1,m̃(s) ds (4.78)

and with these,

T11 = B1
−1

T̃11. (4.79)

With B2 = B′
1 and B3 = B′′

1 we find

T21 = B2
−1

T̃21 (4.80)

T31 = B3
−1

T̃31, (4.81)

with theM2 ×N1 matrix T̃21 and theM3 ×N1 matrix T̃31 defined as

[

T̃21

]

m̃,n
=

∫ 1

0

(

y0
l2
γ−n (1 − s)

nπ

x0
cos ζ2,n(s)

+
x0 − x1

l2
jβn γ

+
n (1 − s) sin ζ2,n(s)

)

tc2,m̃(s) ds (4.82)

[

T̃31

]

m̃,n
=

∫ 1

0

(

− y0
l3
γ−n (s)

nπ

x0
cos ζ3,n(s)

+
x1

l3
jβn γ

+
n (s) sin ζ3,n(s)

)

tc3,m̃(s) ds (4.83)

Submatrices Related to the Gibbs Effect Elimination

The following functions are introduced

γ̂−(s)
def
=

(

ejβ̂y0(1−s) − ejβ̂y0(1+s)
)

(4.84)

γ̂+(s)
def
=

(

ejβ̂y0(1−s) + ejβ̂y0(1+s)
)

(4.85)

ζ̂2(s)
def
=

π

2x0

(

x0 + s (x1 − x0)
)

(4.86)

ζ̂3(s)
def
=

π

2x0

(

(1 − s)x1

)

. (4.87)
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TheM ×M matrices D̂pi are found from

D̂
pi = T̂

pi Ŵ
pi (4.88)

for

Ŵp1 =
(

γ̂−(1)
)−1

Ŵ
p1

0
(4.89)

Ŵp2 =
(

γ̂′−(1)
)−1

Ŵ
p2

0
(4.90)

Ŵ
p3 =

(

γ̂′′−(1)
)−1

Ŵ
p3

0
. (4.91)

with Ŵ
pi

0
theM -element row vector that selects fromΨc a good approximation of the

corner value of ψ at pi. Furthermore

T̂p1 =







T̂11

T̂21

T̂31.






(4.92)

with

[

B1 T̂11

]

m̃,1
= −jβ̂ γ+(1)

∫ 1

0

cos
(πs

2

)

tc1,m̃(s) ds (4.93)

[

B2 T̂21

]

m̃,1
=

−y0
l2

π

2x0

∫ 1

0

γ̂−(1 − s) sin ζ̂2(s) tc2,m̃(s) ds

+
x0 − x1

l2
jβ̂

∫ 1

0

γ̂+(1 − s) cos ζ̂2(s) tc2,m̃(s) ds (4.94)

[

B3 T̂31

]

m̃,1
=

y0
l3

π

2x0

∫ 1

0

γ̂−(s) sin ζ̂3(s) tc3,m̃(s) ds

+
x1

l3
jβ̂

∫ 1

0

γ̂+(s) cos ζ̂3(s) tc3,m̃(s) ds (4.95)

and

T̂
p2 =







T̂′
31

T̂′
11

T̂′
21






and T̂

p3 =







T̂′′
21

T̂′′
31

T̂′′
11






(4.96)
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TheM ×M matrices R̂pi are written as

R̂
pi = E − L̂

pi Ŵ
pi (4.97)

with E theM ×M unit matrix. Matrix L̂pi is split up as

L̂p1 =







L̂11

L̂21

L̂31.






(4.98)

with

[

B1 L̂11

]

m̃,1
= γ−(1)

∫ 1

0

cos
(πs

2

)

tc1,m̃(s) ds (4.99)

[

B2 L̂21

]

m̃,1
=

∫ 1

0

γ̂−(1 − s) cos ζ̂2(s) tc2,m̃(s) ds (4.100)

[

B3 L̂31

]

m̃,1
=

∫ 1

0

γ̂−(s) cos ζ̂3(s) tc3,m̃(s) ds (4.101)

and

L̂p2 =







L̂′
31

L̂′
11

L̂′
21






and L̂p3 =







L̂′′
21

L̂′′
31

L̂′′
11






(4.102)
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The fields at a finite conducting 2-D wedge are studied by means of the sur-

face admittance operator, and compared to the case of a perfect conductor.

This technique, applied to a number of numerical examples, allows a thorough

investigation of the singular behavior of the fields near the edge, including

non-singular fields such as the longitudinal current distribution. Special at-

tention is devoted to the validity of the quasi-TM approximations, when edge

singularities are taken into account. The studied field properties lead to the

formulation of an approximative local surface impedance for conductors, and

are finally used to show how some differences in the resistive and inductive

behavior of conductors with a different geometry are due to edge effects.

5.1 Introduction

For many years, researchers have been looking for accurate descriptions of the loss

mechanisms in interconnect structures. As modern technological applications in very-

large-scale-integration (VLSI) circuits push the limits of speed and miniaturization,

conductor losses more than ever remain an important issue, by far more relevant than
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radiation or dielectric losses. Not only heat generation needs to be kept under control,

the losses also have an important impact on the signal integrity, due to attenuation and

dispersion.

The earliest research on interconnect losses is well-summarized in [1], mentioning

for instance Wheeler’s incremental inductance rule, where the magnetic field gener-

ated by the axial current flow is used to calculate the losses, assuming an equal real and

imaginary part of the high-frequency internal impedance per unit length. The resis-

tive properties of coupled lines with finite conductivity were more rigorously studied

in [2] and [3], using the Method of Moments (MoM) with a boundary discretization,

respectively, a volume discretization of the field quantities. Many other numerical ap-

proaches were used for analogous purposes, e.g., Finite Elements Methods [4], hybrid

methods based on the ‘filament technique’ at low frequencies and a surface integral

equation at high frequencies [5], or a combination of the MoM and the Method of

Lines [6], just to mention a few. Generally, the boundary integral equation techniques

appear to be more suited in terms of both computation time efficiency and accuracy,

than methods based on a volume discretization of the currents, especially at the highest

frequencies.

The importance of the edge effect in the current profile of polygonal (mostly rect-

angular) conductors became clear with the (sometimes mutually inconsistent) results

that were found from internal inductance calculations [7–9], and which clearly showed

an important deviation from Wheeler’s rule.

In parallel with the research on the effect of the finite conductivity on the circuit

level properties (resistance, inductance) of the lines, another topic of investigation was

the singular field behavior at edges. In [10], and further in [11], the cases of perfectly

electric conducting (PEC) wedges and wedges with dielectric contrast were treated. A

more detailed analysis and further references can be found in [12]. The theory of the

singularity exponent as formulated in [11] was extended to finite conducting wedges

in [13].

Although the specific field behavior at conductors’ edges (both in the PEC and in

the finite conducting case) and the current profile (relevant to the resistive and induc-

tive properties of the lines) are intrinsically linked, both aspects were so far not exam-

ined simultaneously. On the one hand, ‘circuit oriented’ papers such as, e.g., [7,14,15],

concentrate on the interconnect behavior, with no specific attention devoted to edge

effects and their influence on the circuit parameters. On the other hand, [11] and [13]

focus on the edge singularities only, not paying particular attention to the properties of

the longitudinal field components, such as the current density, as these do not exhibit

a singular behavior at the edges.

This paper describes the behavior of a finite conducting wedge, as a function of

its opening angle α, in combination with the longitudinal current profile. As opposed

to the singularity exponent technique of [11] and [13], the applied method enables the

description of the total edge field quantities, not restricted to the strongest singularity
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only. Although the technique is a numerical approximation obtained by the MoM, it is

well-suited for an accurate description of the fields near an edge from low to very high

frequencies, as it makes use of a boundary integral equation formulation, in combina-

tion with a field expansion that exactly describes the current crowding phenomenon

inside the conductor.

Essential in this technique is the surface admittance matrix, which relates the elec-

tric field to the equivalent surface current densities that replace the conductors. The

surface admittance matrix is calculated by means of a discretization of the Dirichlet

to Neumann (DtN) operator of the considered conductor’s cross-section. The method

was first introduced for conductors in [16] and extended to dielectrics and semicon-

ductors in [17]. In [18] and [19], the original method for rectangular conductors was

extended to general polygonal shapes.

In Section 5.2, a single wedge is considered. First, the relationship between

Meixner’s [11] work on field singularities and the quasi-TM approximations under-

lying the coupled transmission line model presented in [17] is elucidated. Next, the

equivalent surface current density jeq as introduced in [16] and the current profile in-

side the wedge are studied. Subsequently, an approximative local surface impedance

model for conductors is proposed, intended to demonstrate the principle physical prop-

erties of jeq. In a last subsection, the properties of the wedge current profile are used

to reveal the influence of varying conductor angles on the per unit length (p.u.l.) re-

sistance and inductance for conductors with a high but finite conductivity.

Finally, Section 5.3 summarizes the results.

5.2 Investigation of the Edge Effect

This section is intended to provide the reader with some insight into the field distri-

bution and essential phenomena that occur near edges. Focus is on the physics of

the current and field distribution near a single edge, and the validity of the quasi-TM

approximations (which is confirmed by numerical results).

The considered configuration consists of one triangular metallic non-magnetic

conductor S with conductivity σ, placed in free space. It is assumed that no other

materials (dielectric or semiconducting substrates) are around, in order to study the

edge effect in its most basic configuration, although the results are valid for more

complicated structures as well. In order to avoid the proximity effect in the current

distribution, the reference conductor is considered infinitely far away. All simulation

results shown here are obtained by using the numerical method described in [18]. For

the discretization of the boundary quantities, piecewise linear basis functions are used

over a non-uniform grid. In this way a very fine grid can be used near the corner

tips. When focussing on the edge effect only, the simulation frequency will be chosen

sufficiently high, such that the influence of the side, opposite to the corner of interest,

is negligible. In practice, this means the skin depth has to be much smaller than the
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σ, µ0

ǫ0, µ0

Figure 5.1: Basic configuration of a conducting wedge (as part of a triangle), placed in free

space.

distance between that corner and its opposite side.

5.2.1 The Equivalent Surface Current Density

Consider the triangle shown in Fig. 5.1 with an opening angle α at corner T , with the

permeability µ0 of free space and a ‘high’ conductivity σ (such that σ ≫ ωǫ0). As

explained above, we are only interested in the edge effect in the neighborhood of T .

As mentioned in the Introduction, the volume current flowing through S, is replaced

by an equivalent surface current density source jeq in free space on the boundary c of

S. This equivalent source is found from the requirement that outside S, it generates

the original fields [16]

jeq = un × (h+ − h−
0 ) = un × (h− − h−

0 ). (5.1)

with un the outward pointing normal unit vector on c. The superscripts + and − are
used for the outer, respectively, the inner limit of the fields at c, and the subscript

‘0’ indicates field quantities inside S in the equivalent configuration, in which the

material properties of S are replaced by free space. To obtain the last part of (5.1),

the continuity of the tangential magnetic field was invoked, which allows to write jeq

in terms of boundary quantities inside S in the original, respectively, the equivalent

configuration.

The quasi-TM approximations [17] dictate that for the determination of ez (to

determine the resistive and inductive properties), the longitudinal component jeq,z of

the total equivalent current density suffices (as briefly motivated in the Appendix). For

an e−jβz+jωt-dependence of the fields, the transverse magnetic field ht is found from

Faraday’s law

jωµ0 ht = jβ uz × et − ∇tez × uz . (5.2)

in which ∇t = ∂/∂xux + ∂/∂yuy . Hence, jeq,z , concisely written as jeq, is given
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by

jωµ0 jeq = jβ
(

e−n − e−n0

)

+
∂e−z
∂n

− ∂e−z0

∂n
(5.3)

with en = et · un and ∂/∂n the outward normal derivative.

In [11], Meixner presents an expansion of the fields near the edge, in order to

investigate the field singularities. He shows that the longitudinal fields ez and hz do

not display a singularity at the edge, and if there is no magnetic contrast (as is the case

here), the total magnetic field remains finite. The ez field, e.g., can be expanded in

polar coordinates r and θ as

ez(r, θ) = c1(θ)r
ν + . . . , (5.4)

omitting higher order terms in r, and with

c1(θ) = − jβ
ν
l cos νθ. (5.5)

with l a complex integration constant. The transverse tangential and the normal elec-

tric field components exhibit a singular term that behaves as rν−1. In [13], it is shown

that in the case of a good conductor, ν can be well approximated by

ν =
π

2π − α
. (5.6)

which exactly dictates the singular behavior of en in the case of a PEC conductor.

If the field expansions from [11] are inserted in (5.3), the singular terms in jβe−n
and ∂e−z /∂n cancel each other out, as is also the case for jβe

−
n0 and ∂e

−
z0/∂n. Further-

more, these expansions allow to compare the singular terms in ∂ez/∂n and ∂ez0/∂n.

Inside the wedge, ez satisfies

∇2
t ez = (β2 − k2) ez (5.7)

with k2 = −jωµ0(σ + jωǫ). The expansion (5.4) of ez is substituted in (5.7) and

yields

(

ν2 c1(θ) +
∂2c1(θ)

∂θ2

)

rν−2 + . . . = (β2 − k2) c1(θ) r
ν + . . . (5.8)

Setting the coefficient of rν−2 to zero, confirms the θ behavior of c1(θ) in (5.5), which

is independent of the material parameters. The same remark holds for the term in rν−1

in ∇2
t ez . In the quasi-TM limit, the right-hand side of (5.7) becomes jωµ0σez , and

as seen from (5.8), this diffusion term is not relevant very close to the corner tip. A
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completely similar reasoning can be put forward for ez0 which satisfies

∇2
t ez0 = (β2 − k2

0) ez0 (5.9)

with k2
0 = ω2ǫ0µ0. By construction, ez0 has the same boundary value on c as ez , and

because replacing k2 by k2
0 in (5.7) has no influence on the singular behavior, the two

highest order terms of the expansions of ez and ez0 are identical. As a consequence,

the singularity in ∂(ez − ez0)/∂n is cancelled out, as well as the first higher order

term (∝ rν ).

The above reasoning shows that all four field components in the right-hand side

of (5.3) contain the same singular term. Leaving these singular terms out, thus has no

influence on jeq. Let us indicate the fields in (5.3) without their singular term with

the caret symbol “ˆ”. Within the quasi-TM limit, the terms jβê−n and jβê
−
n0 are both

negligible with respect to ∂ê−z /∂n (considering the fact that |∂ê−z /∂n| > |∂ê−z0/∂n|
due to the current crowding effect). The reason for this is twofold. On the one hand,

the longitudinal wavelength is much larger than a typical cross-sectional distance over

which the fields extend, and therefore we can in general say that “jβ ≪ ∂/∂n” for a

certain field quantity. On the other hand, |ê−n | ≪ |ê−z |. Taking these two arguments
into account leads to

jeq =
1

jωµ0

(∂ê−z
∂n

− ∂ê−z0

∂n

)

(5.10)

=
1

jωµ0

(∂e−z
∂n

− ∂e−z0

∂n

)

. (5.11)

This proves that in the quasi-TM approximation expression (5.11), already put forward

in [16] for the z-independent TM case, still remains valid when the singular field

behavior at an edge is accounted for. As not only the singular terms in rν−1 in (5.11)

cancel out, but also the nonsingular terms in rν and a possible constant term, jeq will

become zero at the tip T , as will be confirmed by the numerical examples.

In the sequel, jeq for a finite conductor will be compared to the surface current

density jPEC on a PEC wedge. This is motivated by the following observation. As the

fields inside the PEC conductor are zero, the inside can be substituted by free space,

provided proper surface charges and surface currents are placed on the boundary. If

these sources are equal to the original surface charge and current on the PEC con-

ductor, the fields in both configurations are the same and the boundary conditions are

met. jPEC is hence the ‘equivalent current source’ for the PEC problem, and is in this

paper compared to the finite conducting case. jPEC can be obtained by solving a static

potential problem, with the longitudinal magnetic vector potential az = V
√
ǫ0µ0 on

c. This result is obtained from the general relationship

ez = jβφ− jωaz, (5.12)
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Figure 5.2: Surface current density |jeq| for a 50◦ copper wedge (see inset). Solid lines: |jeq|
for finite conductivity (σCu = 57.2 MS/m), with indication of the distance δCu from the corner

top. Dashed line: |jPEC| for PEC wedge.

combined with ez = 0, φ = V and β = ω
√
ǫ0µ0 on the boundary of the considered

perfect conductor in free space.

In Fig. 5.2, the equivalent surface current density |jeq| near a copper wedge of
50◦ is compared with the PEC case, for various frequencies. In the simulation, the

wedge was the top corner of an isosceles triangle (with both legs 60µm long, such

that the edge effects of the different corners do not interfere at the shown frequencies),

with the electric boundary potential put to V = 1 V. To get an idea of the frequency

relative to the dimensions, the point where the distance r to the corner tip equals one

skindepth δCu, is indicated as well. Notice that, as explained earlier, jeq vanishes at

the tip and therefore does not have jPEC as its limiting case for ωσ → ∞, because
jPEC is always singular (for an wedge angle smaller than 180◦). It is clear though,

that more than a few skindepths away from the edge, jeq and jPEC become almost

identical.

In Fig. 5.3, a similar wedge is treated as in Fig. 5.2, but at a fixed frequency
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(10 GHz) and for a varying top angle α. In order to investigate the behavior of jeq
with respect to jPEC for different values of α, Fig. 5.3 (a) shows the normalized cur-

rent density |jeq|/jPEC near the corner tip. As the solution of the diffusion equation

only depends on the product ωσ instead of both factors separately, the abscis r is

normalized by the skin depth in copper δCu = (πfµ0σCu)−1/2. The deviation of

the curves in Fig. 5.3 (a) from unity shows the influence of the finite conductivity.

The equivalent current density at the sharpest angles deviates more from jPEC than

at the wider angles. This can be explained by the diffusion at skin effect frequencies.

Near the edge of a narrow wedge, the adjacent sides are more tightly coupled for a

wider wedge, and the current crowding effect starts appearing further away from the

tip as compared to the wide wedge case. Therefore, the edge effect is more impor-

tant for narrower wedges. In [18], this phenomenon appears to be the reason for the

slower convergence of the ICWM (Iterative Combined Waveguide Modes) procedure

for sharper angles, where the coupling between the sides of the conductor is gradually

taken into account.

As a verification of the singular behavior of jPEC, Fig. 5.3 (b) shows jPEC for the

same wedge, normalized by a factorCrν−1, with ν given by (5.6). For π > α > 0, the

singularity exponent (ν − 1) lays between 0 and −1/2, with, e.g., an r−1/3-behavior

for a 90◦ angle. For each value of α, the proportionality constant C is chosen such

that (jPEC/Cr
ν−1) becomes one in the limit for r = 0.

5.2.2 The Electric Boundary Potential φc

This paragraph is intended to demonstrate the validity of the assumption that, in the

quasi-TM limit, the electric potential φ on the boundary of a good conductor remains

constant over its edges. With Meixner, the potential φ can be written as

φ(r, θ) = V + f1(θ) r
ν + f2(θ) r

ν+1 + . . . (5.13)

The expansions in [11] only describe the singular behavior of the fields (or their nor-

mal derivatives) and here, (5.13) is completed with a constant term V , as motivated

in [20]. The coefficient f1(θ) is found as

f1(θ) = − l cos νθ

ν
(5.14)

and the term f1(θ) r
ν has a singular normal derivative at r = 0. From (5.5) and (5.12),

we see that neglecting this term with respect to the total potential φ, corresponds to ne-

glecting the term c1(θ) r
ν in ez . This means that an excitation with a constant bound-

ary value φc = V , does not give rise to a singularity in ∂ez/∂n. This approximation

is acceptable within the quasi-TM limit, as is briefly discussed in the Appendix.

We will demonstrate with a numerical example how accurate this approximation

really is, by comparing the approximative constant voltage excitation φc = V with
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Figure 5.3: Normalized surface current densities for different angles α, and at 10 GHz. (a)
|jeq|/jPEC, and (b) jPEC/Cr

ν−1, with C chosen such, that jPEC/Cr
ν−1 becomes one at

r = 0.

the term f1(θ) r
ν = ∆φc on the boundary θ = α/2 of a wedge (see Fig. 5.1). Near

the edge, where the singular term proportional to rν−1 dominates the surface charge

ρeq (see Appendix), e
−
n is, with the results from [11], given by

e−n ≈ −l sin να
2
rν−1 ≈ jω

σ
ρeq (5.15)

such that

∆φc ≈ jω

σ

ρeq

ν rν−1
cot

(να

2

)

rν . (5.16)

Note that ρeq is a very good approximation of the actual surface charge, even though

calculated with the approximative excitation φc = V , as it is very similar to the PEC

case where φc ≡ V (see Appendix). Note that ρeq itself is proportional to r
ν−1 and
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Figure 5.4: The term∆φc in the boundary potential expansion near the edge, in absolute value

and normalized by φc, for the 50◦ wedge shown in Fig. 5.2

hence that∆φc tends to zero as r
ν .

For the copper 50◦ wedge from Fig. 5.2 and at the same frequencies, the term

∆φc is compared with the voltage φc = V , the constant excitation voltage used in

the quasi-TM simulations. Fig. 5.4 shows the results, and it appears that even at the

highest shown frequencies, ∆φc remains many orders of magnitude smaller than φc,

for the shown region r ∈ [0, 15µm] where the approximation (5.16) can be assumed

to be valid.

5.2.3 The Electric Field Distribution Inside the Wedge

The longitudinal electric field ez on a conductor’s boundary can be found with the

MoM [17], and the inside ez field is readily determined as well, by means of an expan-

sion in terms of parallel plate waveguide modes as described in [18]. In Fig. 5.5, the

normalized longitudinal electric field distribution |ez/jβφc| is shown inside the 50◦

copper wedge of Fig. 5.2 and for a radial length of r = 15µm , at 10 MHz, 100 MHz,

1 GHz, and 10 GHz. For these frequencies, the skin depth is given, respectively, by

21µm, 6.6µm, 2.1µm and 0.66µm.

In order to visualize the influence of the wedge angle on the current distribution,

Fig. 5.6 (a) again shows the normalized electric field |ez/jβφc|, and Fig. 5.6 (b) shows
the phase of ez on c. The same geometries are used as for the simulations shown in

Fig. 5.3. The increase of ez toward the edge is much more pronounced for the sharpest

angles, and almost non-existing for the obtuse angle of 135◦. The phase arg (ez) for

the sharp corners displays a large deviation of the plane wave limit of 45◦, over a

distance of many skindepths away from the tip.

As a verification of the numerical results, the boundary value of ez on a rectan-
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normalized electric field | ez

jβφc
|

Figure 5.5: Normalized electric field |ez/jβφc| inside a copper wedge (σCu = 57.2 MS/m)
with an angle α = 50◦, shown for r ∈ [0, 15µm].

gular conductor is compared with results found in [21]. The simulated configuration

consists of a golden microstrip line above a ground plane. Fig. 5.7 shows the geome-

try (see inset), as well as the results calculated by means of the MoM in combination

with the DtN operator in solid lines, at different frequencies. At the frequency f0,

the reference data from [21] are indicated as well. Note that in [21], a golden ground

plane was used, whereas here just a PEC ground is considered. Yet the results seem

to match quite accurately. In [21], the fields were considered to be z-independent, and

excited by means of the external field Eext
z , which corresponds with our term jβφc in

(5.12). In Fig. 5.7, the normalized field |ez/jβφc| is given. At the lowest frequencies,
jωaz ≪ ez , such that the current distribution is almost uniform and ez/jβφc ≈ 1. At

skin effect frequencies, ez decreases because the difference between jβφ and jωaz

goes to zero for ωσ → ∞, as the fields approach the PEC field distribution with
ez ≡ 0.
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Figure 5.6: (a) The normalized electric field |ez/jβφc| on the boundary of a copper wedge
(σCu = 57.2 MS/m) for different angles α and at 10GHz, and (b) the phase of the corre-
sponding electric field ez (for φc = 1 V).

5.2.4 A Local Surface Impedance Approximation

After studying jeq and ez near a wedge, we have a sufficient understanding on the

wedge effects as to propose the following approximation for jeq on the boundary c

of an arbitrary two-dimensional conductor in free space (hence not restricted to the

wedge only)

jeq ≈ 1

jωµ0

(

ez
∂e1
∂n

)

c

def
= japprox. (5.17)

The approximate surface current density japprox contains the actual boundary value

of ez, multiplied with the normal derivative of a function e1 which satisfies

∇2
t e1 = jωµ0σ e1 (5.18)



5.2 Investigation of the Edge Effect 127

| ez

jβφc
| on a microstrip boundary

c1 c2 c3 c4

with DtN

data from [21]

perimeter c of rectangle S

bottom right top

1

0.1

0.01

f0/100

f0/10

f0

10f0

100f0

h ground

t

w

σAu

c1 c2

c3c4

Figure 5.7: Normalized longitudinal electric field |ez/jβ| on the boundary of the microstrip,
shown in the inset, with w = 10µm, t = 2µm, h = 2µm, and σAu = 41MS/m. The
simulations were performed for different frequencies, with f0 = 4.367 GHz.

inside the conductor (as ez itself), but is 1 on c. The idea behind this approximation

is the separation of the two major phenomena that play a role. On the one hand, we

have the value of ez on c, increasing towards the corners as governed by the (outside)

magnetic field, and on the other hand the current crowding phenomenon inside the

conductor, which would behave like ∂e1/∂n if the boundary field were a constant.

At the higher frequencies and far enough away from the corners, the local plane wave

behavior confirms that the approximation becomes accurate. At the lower frequencies,

ez is approximately constant over the cross-section, and the approximation holds as

well. With (5.17), we have therefore constructed a local surface impedance Zapprox,

Zapprox =
jωµ0

∂e1

∂n

(5.19)

with the correct low- and high-frequency limits. The approximation is acceptable,

because the total current I is, for any frequency, found as

I =

∮

c

jeq dc =

∮

c

japprox dc. (5.20)
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This can be proved by invoking Green’s theorem in combination with (5.17), (5.18)

and the same diffusion equation for ez itself
1.

As a numerical verification, consider a rectangular copper conductor (σCu =

58 MS/m) with dimensions 200µm × 30µm in free space. At 1 MHz, 100 MHz, and

10 GHz), the real and imaginary part of both jeq and japprox are shown in Fig. 5.8.

For these frequencies, the skindepth in copper is, respectively, 66µm, 6.6µm, and

0.66µm. At the low and high frequencies, jeq and japprox are very close to one an-

other as expected, but also at the intermediate frequency the behavior is quite similar,

confirming the physical ideas behind the equivalent surface current density.

5.2.5 The Edge Effect vs. the p.u.l. Resistance and Inductance

In [18], it was found that the high-frequency resistance for trapezoidal or triangular

conductors is higher than for a rectangular reference conductor with the same cross-

sectional area, despite their longer circumference. In a last numerical example, the

field distribution for these situations is shown in direct relationship with the corre-

sponding circuit properties.

The starting point is the following telegrapher equation for a single line

jβ V = (jωL+R) I = Z I. (5.21)

Studying ez/jβV on the conductor’s cross-section, or its normal derivative at the

boundary, only yields information on Z−1, not directly on the resistance and induc-

tance of the line. Therefore, we will transform (5.21) into

(jωL+R) = jβṼ

∮

c

( 1

jωµ0

∂e−z
∂n

)∗

dc. (5.22)

with the excitation voltage Ṽ chosen real and positive, but such that |I| = 1 A (or,

alternatively, Ṽ = V/|I|2). The integrand equals the complex conjugate h∗tan of the
tangential magnetic field in the quasi-TM limit. The contribution of ∂ez0/∂n could

be included as well, to obtain jeq in the integrand (as it does not contribute to the

integration), but this would make the graphical results less transparant.

The first considered configuration consists of a rectangular golden conductor with

width w = 10µm and height t = 2µm, placed above a PEC ground plane with

a separation of h = 2µm. This is the configuration used in Fig. 5.7, and operated

at 10 GHz. Secondly, a symmetric trapezoidal golden conductor is considered, also

placed above a PEC ground plane, with a bottom width B = 12µm and a top width

1 Note that the integration of Z−1
approx along the boundary of the conductor yields the inverse of the

internal impedance Zin,Y , introduced in Chapter 2 based on the assumption that the influence of the external

magnetic field is omitted by introducing the artificial boundary condition of a constant tangential electric

field. This relationship is not surprising, as e1 does not vary along the boundary.
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Figure 5.8: Real and imaginary part of jeq and japprox, at (a) 1MHz, (b) 100 MHz, and (c)
10 GHz for a rectangular copper conductor in free space (σCu = 58 MS/m, width = 200µm,
height = 30µm).

b = 8µm, and hence the same area as its rectangular counterpart.

Fig. 5.9 shows the resistance R and the inductance L of both configurations. The

inductance of the trapezoidal conductor is considerably lower than the rectangle’s, and

the resistance displays the opposite behavior.

According to (5.22), the circuit parameters ωL and R are obtained by integration

of the quantities Im(jβ Ṽ h∗tan) and Re(jβ Ṽ h∗tan) shown in, respectively, Fig. 5.10

(a) and (b). The main difference in jβ Ṽ h∗tan between bottom and top side is governed

by the proximity effect. There is a very close resemblance on the top side of both con-

ductors, with a considerably lower tangential magnetic field than on the bottom side.

It means that the 135◦ angles of the trapezoidal conductor have very little influence

on the field distribution, confirming previous investigations at wedges. For the bottom

sides, there is a larger deviation, primarily due to the proximity effect as well. As the
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bottom side of the trapezoidal conductor is larger than the corresponding side for the

rectangle, and given the fact that the total current flowing through both conductors

remains fixed at 1 A and is primarily located in the lower part of the conductor, due

to the proximity effect, the agerage bottom field away from the corners is smaller in

the trapezoidal case as compared to the rectangular one. This translates into a lower

L-value. The authors have verified that the current density distribution shows a similar

behavior. However, near the sharp 45◦ angles, the phase shift in the current density

(see also Fig. 5.6 (b)) and therefore also in the tangential magnetic field, has the effect

that the resistive term Re(jβ Ṽ h∗tan) is no longer smaller than at the 90◦ angles of the

rectangle, but even slightly higher, resulting in an overall higher p.u.l. resistance R at

skin effect frequencies.

5.3 Conclusions

The quasi-TM techniques for modeling the resistive and inductive properties of con-

ductors remain valid near conductor edges. The specific field behavior of a finite

conducting wedge was investigated and illustrated with a number of numerical ex-

amples to clarify the underlying physical mechanisms, which led to the formulation

of an approximative local surface impedance description of conductors. Finally, the

studied phenomena were used to explain some differences in the (R, L)-behavior of

microstrips with different geometries.
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jβ Ṽ h∗

tan

)

(Ω/m/µm)

Re
(

jβ Ṽ h∗
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Appendix

This Appendix deals with some issues, related to the quasi-TM approximations. In the

frequency range where they are valid, |jeq,z| ≫ |jeq,tan|. The reason is, with (5.1),
that

|htan| ≫ |hz| (5.23)

(with the subscript tan denoting the transverse part of the total tangential field com-

ponent), as htan has a static contribution, whereas hz is only of second order in ω.

However, to keep the quasi-TM equations consistent, jeq,tan cannot be considered

zero, as it is relevant for the capacitive behavior. Indeed, the surface charge ρeq, asso-

ciated with the total equivalent current density is found as

− jωρeq =
∂jeq,tan

∂tan
− jβ jeq,z. (5.24)



132 FIELDS AT A FINITE CONDUCTING WEDGE

The surface charge, associated with the normal electric field, is singular at the edges,

as is ∂jeq,tan/∂tan, while jβ jeq,z remains finite. Moreover, the variation of jeq,z in

the z direction is small, compared to variations in the cross-section. Therefore, the

term in jeq,tan is essential in (5.24). In practice, the influence of jeq,tan is well taken

care of, if a surface charge source ρeq is directly imposed on the surface, together with

the current source jeq,z . This charge distribution can be determined by solving a quasi-

static potential problem replacing the actual conductor with a PEC one, as motivated

in [17]. This approach remains valid at the edges as well, because the singular term in

ρeq has an r
ν−1 behavior, and for a good conductor, ν approximately equals its value

for a PEC conductor [13].

As shown earlier, the approximation φc = V corresponds to omitting the term

c1(θ) r
ν in ez . That (finite) term keeps up for the ‘slow’ longitudinal variation of the

(singular) transverse current, because the curl of the total electric field has to remain

finite. The field hz is associated with the transverse electric field (more specifically, its

transverse rotation), and similarly, the much larger htan with the part of ez without the

term c1(θ) r
ν (by means of its normal derivative). Within the quasi-TM limit (5.23),

we can therefore say that near the edge |ez| ≫ |c1(θ) rν | and hence the approximation
φc = V is sufficiently accurate (confirmed also in Fig. 5.3).
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CHAPTER6

Conclusions and

Future Research

In this work, a new and powerful multiconductor transmission line model was devel-

oped, in an attempt to meet the technological requirements for the design of present

day and future high-speed metallic interconnections. In parallel with the model it-

self (Chapter 1), a number of related issues were studied, such as conductor modeling

(Chapters 2 and 5) and the discretization of the Dirichlet to Neumann operator (Chap-

ters 3 and 4).

This final chapter summerizes the results and the possibilities of the final model

itself, along with its limitations and with some ideas for further research in the field of

metallic interconnections.

6.1 Development of a New Transmission Line Model

The previous chapters describe a multi-conductor transmission line model [1–3], de-

veloped for the simulation of two-dimensional interconnect structures, consisting of

signal conductors, semiconductors, and dielectric materials, all piewewise homoge-

neous and composed of polygonal subregions. These materials are replaced by equiv-

alent surface sources (charges and currents), defined by the requirement that they ex-

cite the same fields as the original configuration. Two relationships can be found be-

tween these sources and the fields, (a) by relating fields and sources by means of the

Green’s function of free space (or, more generally, of the background medium), and

(b) by relating the free space sources for each homogeneous subregion with the origi-

nal fields at the boundary surface of the material. The latter relationship is formulated

by means of the Dirichlet to Neumann (DtN) operator, which can be calculated for

general polygonal shapes. Two boundary integral equations are hence found, which

are solved by means of the classical Method of Moments (MoM). An appropriate inte-
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gration of the equivalent surface sources then leads to the circuit matrices (resistance,

inductance, capacitance and conductance) of the coupled transmission line model, and

hence to the characteristics of the fundamental propagation modes the configuration

supports.

Applications

The model is suited for the simulation of interconnections both on printed circuit

boards (PCB), as within integrated circuits (on-chip), irrespective of the different

physical properties of these applications. On the PCB level, the signals transmitted

over the longest interconnections are often subject to important signal delays due to

wave effects, such that an accurate prediction of the p.u.l. inductance and capacitance,

but also of the resistive and conductive losses, is primordial. Although the operating

frequencies, and especially the highest harmonics, often correspond with a strong skin

effect operation of the interconnections, these frequency-dependent parameters can be

calculated very accurately, thanks to the introduction of the equivalent surface cur-

rents by means of the DtN operator, such that the exponential current profile towards

the inside of the conductors is exactly accounted for. For on-chip interconnections,

the operation frequencies with respect to the geometrical dimensions are such, that

the resistive and capacitive properties of the lines dictate the overall behavior. Yet also

inductive coupling effects and conductive (substrate) losses are no longer negligible

in modern high-speed semiconductor technologies. The influence of high-loss sub-

strates was investigated and incorporated in the model, requiring a reciprocity-based

approach. As a result, effects such as slow-wave propagation modes are correctly

taken into account.

Limitations

The highest frequencies for which the model is valid, are limited by the validity of

the quasi-transverse-magnetic (quasi-TM) approximations [1]. These require that the

longitudinal wavelength is considerably larger than the transverse dimensions over

which the fields are relevant, and the model is, hence, not suitable if transverse wave

phenomena occur. However, the highest operation frequencies relative to the lines’

dimensions are often generously within the quasi-TM validity range.

Furthermore, the practical interconnections for which the 2-D model can be ap-

plied, should involve lines that are long enough and without any bends, to justify the

use of a two-dimensional model. Yet, 2-D models are nowadays often used in practice

by circuit designers and will in the near future gain importance with respect to tra-

ditional (often quasi-empirical) design formulas. Full 3-D interconnect simulations,

especially with finite conductivities and at high frequencies, are computationally still

very hard, and therefore not apt for optimization and design.
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6.2 The Dirichlet to Neumann Operator

A new method has been developed to calculate the DtN operator for rectangular re-

gions [4]. On the one hand, the original method [5] that makes use of a double sum-

mation involving the rectangle’s Dirichlet eigenfunctions, is replaced by a much faster

calculation method, based on an expansion in parallel-plate waveguide modes, and

hence resulting in a single summation only. On the other hand, this novelmethod addi-

tionally allows for the calculation of the non-differentialDtN operator at the boundary

of dielectrics and semiconductors, which is required for capacitance and conductance

calculations.

In a further contribution [3], the parallel-plate waveguide expansion technique

was extended to the case of triangular conductors, resulting in the Iterative Combined

WaveduideModes (ICWM) algorithm, with an extension towards general convex poly-

gons [6].

Extension Towards 3-D Conductors

Apart from the work on the two-dimensional transmission line model, a lot of time was

invested in an extension of the surface admittance concept towards three dimensions.

We started with the full-wave 3-D calculation of the surface admittance operator on

the surface of a rectangular parallelepiped, as a logical extension of the 2-D rectangle.

The 3-D surface admittance operator relates the tangential electric field with the equiv-

alent surface current density, obtained from replacing the considered material by the

background material. The developed method is based on the superposition of modes

from a rectangular waveguide, leading to a double summation of modes instead of

the triple summation that would result from the traditional 3-D Dirichlet eigenfunc-

tion approach [7]. In Appendix C, the basic ideas and field expansions are written

down. The explicit projection matrices that result from an expansion in basis func-

tions and the Galerkin testing procedure, are however left out here, as the expressions

are quite formidable. Yet it is possible to write the interaction between the electric

and magnetic tangential field components on two faces as an efficient matrix product

(provided that a specific tensor-product is introduced), and to prove that the result-

ing surface admittance matrix is symmetric (at least theoretically, if infinite expansion

series could be used).

An implementation was written for a pulse function expansion of the field quan-

tities on the boundaries, and gave satisfactory results for internal impedance calcula-

tions as described in [8]. However, inserting the resulting matrix in a classical solution

method (MoM)was not possible, because the solenoidal and the irrotational field com-

ponents could not be rigorously separated for a pulse function discretization (not even

by using the solenoidal and irrotational expansion functions, due to the truncation of

the series expansions), and the so-called low-frequency breakdown caused unaccept-

able numerical inaccuracies.
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This problem could have been solved by using the classical rooftop basic func-

tions. That was however not implemented, because of another, and more fundamental

problem. Imagine, e.g., a cube, roughly discretized using 15 intervals on each side.

With six sides, and four field components per side, this would result in a surface

admittance matrix containing almost 30 million entries. Storing and loading, and es-

pecially inversion of such a large (dense) matrix would be computationally too heavy,

especially for finer discretizations, required for accurately capturing current crowding

effects or to represent charge densities near corners. In other numerical methods, such

as the Fast Multipole Method adapted for low-frequency problems [9], the multiplica-

tion of such a matrix with a candidate solution is calculated directly (without having to

store the whole matrix), for use in an iterative procedure, and hence computationally

less demanding.

6.3 Conductor Modeling

In the field of conductor modeling, the transmission line model research resulted in

three specific contributions. First of all, as a demonstration of the model’s accuracy in

handling thick conductors over a broad frequency range, the properties of coated and

layered on-chip conductors were investigated [2].

In another contribution [8], it was shown that the knowledge of the surface ad-

mittance operator of a conductor, containing material and frequency data but indepen-

dent of the surrounding environment, suffices to investigate the conductor’s internal

impedance. The developed techniques allowed a careful comparison with analogous

contributions found in literature, and a generalization of these results for, e.g., com-

plicated conductor shapes or composite conductors.

Finally, the ICWM algorithm was used in a thorough investigation of the fields at

sharp conductor edges, allowing to make a link with the global circuit properties of

conductors, and to investigate how these are influenced by the conductor edges.

6.4 Further Research on Interconnections

In this section, a few suggestions for further research topics are listed. Some of them

directly follow from the research presented in this dissertation, and others are just

vague ideas, but might be relevant in the light of future advances in metallic intercon-

nects. However, the presented ideas were not yet further explored, and neither has

their feasibility been investigated, and they should therefore be approached with a fair

share of scepticism.
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Transmission Line Modeling

• The DtN concept for conductors or non-planar substrates could be integrated in
a solver that already handles a one-dimensional layered substrate, for which the

Green’s function can be determined. This would highly improve the efficiency

of the method, especially for on-chip applications as, e.g., the configuration

in Fig. 1.7, where the computation of the DtN operator of the semiconducting

substrate requires much more computation time and memory than of all the

conductors together, considering its dimensions.

• For the calculation of the DtN operator itself, improvements are still possible,
both when using the direct calculation method for rectangular geometries, as

well as for triangular geometries by means of the ICWM algorithm. The reason

is that the expansion techniques are not yet fully optimized for efficiency. The

correction technique of the Gibbs effect (see Chapters 3 and 4) by means of

one extra expansion function per corner (being non-zero at that corner), could

be extended with additional basis functions, such that less terms are needed

in the overall expansion. The coefficients of these basis functions must then

be determined by solving an appropriate set of equations. For example in the

case of conductors, a number of extra basis functions could be used that are

each constant on one side of the considered polygon and describe the exact

behavior on the inside. In order to describe the very-low-frequency case, the

contributions of higher order expansion functions would hence be much smaller

than by using the method as described in this work, and less terms would be

required. A further increase in efficiency could perhaps be obtained by fast

transform techniques for the boundary expansion coefficients.

• It would be interesting to simulate transmission line structures beyond the quasi-
TM frequency range, and implement a 2-D full-wave solver. For that, the DtN

operator that maps the electric field onto its normal derivative should be ex-

tended as to relate the total tangential electric and magnetic fields. To that end,

specific expansion functions are needed for the different fields (i.e., analogous

to Appendix C, but one dimension lower). The method could also be based on

the same ideas of waveguide mode expansions (in this case of both electric and

magnetic) parallel-plate waveguides). Furthermore, no longer the quasi-static

Green’s function (i.e., the singular logarithmic term from the full-wave Green’s

function), but the full-wave 2-D Green’s function itself needs to be used.

• The presented two-dimensional transmission line model in the frequency do-
main could be transformed into a parametric state-space model, using, e.g.,

vector fitting techniques [10], in order to investigate time domain responses

of bit streams as input signals. It would be interesting to see, how the geometry-

dependent frequency-domain parameters (RLGC matrices of the lines, in com-



140 CONCLUSIONS AND FUTURE RESEARCH

bination with the source and load impedances), influence the bit error rate of

a realistic transmission channel, or how the inductive and capacitive coupling

parameters result in cross-talk effects.

• In line with the topic mentioned above, but not necessarily in the time domain,
the influence of realistic (even non-linear) source and load circuits could be

investigated. It would be equally interesting to take end effects into account,

i.e., the fact that the interconnect configuration can no longer be assumed two-

dimensional, near its end points.

Conductor Modeling

• The DtN technique as applied here, only deals with perfectly smooth conduc-
tors, and assumes their dimensions are exactly determined. It would be useful

to take into account imperfections such as a surface roughness, or a statistical

variation of the dimensions, due to variable parameters in the manufacturing

process. A possible strategy would be, to investigate whether the deterministic

surface admittance concept could be modified to take into account these effects,

especially at skin effect frequencies.

• One particularly interesting possible research topic deals with bent conductors
with a finite conductivity. Instead of immediately solving the full-wave equa-

tions, one could think of extending the 2-D quasi-TM techniques to a consistent

approach for low-frequency interconnect configurations in three dimensions,

starting from an equivalent situation in which the conductors are replaced by

unknown surface sources in free space. This could provide a fast approximative

method to calculate the scattering coefficients, or an equivalent circuit model

involving transmission lines. In this way, time-consuming full-wave numerical

simulations could be avoided, as they often have difficulties with a finite con-

ductivity at skin effect frequencies and are not practical for design purposes.

The strengths of such a method with respect to traditional methods like the

partial element equivalent circuit (PEEC) method [11,12], would be in the sim-

ulation of current crowding effects with a surface integral equation only, and in

the simplifications that nevertheless accurately capture the current distribution.

Consider, e.g., the very simple situation of a bent conductor above a ground

plane. If both the ‘transverse’ dimensions of the lines over which the fields

are relevant, and the region near the bend or corner, are small as compared to

the wavelength, the following strategy could be adopted. In the cross-section

perpendicular to the lines in the ‘2-D’ zone, and in the region covering the

bend, the surface value of the scalar electric potential could be considered a

constant (as in the 2-D case) as to formulate an equivalent capacitance problem.

In the ICWM algorithm, the actual 2-D current pattern is found by an iterative
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method starting from the situation where the sides of a triangle do not interfere.

A logical choice here would therefore be to adopt an iterative method as well,

in order to determine either the equivalent surface current, or an expansion of

the inside current profile in terms of waveguide modes, including the reflexion

and transmission of the applied excitation. A suitable starting point for such an

iterative process could be the 2-D field profiles at both sides of the corner, as if

the lines would not interfere and no reflexions would occur.

Applications of the ICWM algorithm

• The ICWM algorithm, based on a superposition of modes from waveguides
with a different orientation, was first developed as an alternative to using a sin-

gle complete set of waveguide modes, which lacked accuracy due to unstable

exponential terms. The initial purpose was however not to find an expression for

the DtN operator, but to numerically determine the Dirichlet eigenfunctions and

eigenvalues of an arbitrary triangle, in an attempt to extend the original Dirichlet

expansion technique of [5] to triangles. Using a single complete set of modes,

we managed to only determine a few hundred of Dirichlet functions with a suf-

ficient accuracy, by far not enough for an accurate expansion of high-frequency

current densities. However, as soon as the correct expansion technique became

clear, based on partial sets of modes from different waveguides, the purpose

was no longer to find the Dirichlet functions, but instead, to directly calculate

the DtN operator, by analogy with the new calculation technique for rectangles.

Regarding the accuracy of the iterative technique [3], the resulting method could

probably be modified as to calculate the Dirichlet and Neumann eigenfunctions

of a triangle (or convex polygon), as well as the corresponding eigenvalues.

• As presented in [3], the convergence of the ICWM is only guaranteed if only
evanescent waveguide modes are used, and the applications are therefore re-

stricted to, in terms of wavelengths, ‘low-frequency’ problems. It would be

interesting to investigate how the expansion technique could be extended to

problems with the size in the order of a wavelenth or larger, especially for loss-

less materials. The same argumentation as in the original algorithm shows that a

solution exists. Three sets of modes that are complete on one of the sides, form

the exact solution inside the triangle and are zero at the opposite corner, must be

sufficient to represent the overall solution (due to the uniqueness of the solution,

but omitting possible resonances), even if they are not exponentially damped.

The convergence of the iterative method might be an issue, as well as a good

‘initial’ expansion. A direct approach instead of an iterative procedure could

present an alternative solution technique. Note that for the numerical determi-

nation of the Dirichlet eigenfunctions of a triangle as mentioned above, apart

from the evanescent modes, a truncated series of these ‘propagating’ waveguide
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modes is required.

• It would be possible to apply the ICWM algorithm to other geometries than just
triangles (or convex polygons). One could think of geometries involving, e.g.,

circle segments, and an expansion using a combination of parallel-plate waveg-

uide and circular waveguide modes. Even in three dimensions, the algorithm

could hold, for geometries such as a general parallelepiped, because the Dirich-

let and Neumann eigenfunctions for its sides are known. For geometries such

as a tetrahadron, the numerically determined Dirichlet functions (in full-wave

applications completed with the Neumann functions), of the faces would have

to be used. Towards the inside, the exact behavior can then be written down in

terms of complex exponential functions, by means of the Dirichlet eigenvalues

of the corresponding face and the wavenumber of the material inside.

The determination of the surface admittancematrix for three-dimensional shapes

would only be practical, provided not too many discretization intervals are re-

quired, otherwise the resulting matrices would be very large, as already men-

tioned. On the other hand, in certain cases not the projection of the expansion

functions on, e.g., rooftop functions on the faces, but the expansion functions

themselveswith corresponding coefficients could be used to represent the fields.

A possible application could be the following. In numerical methods with a reg-

ular grid, oblique surfaces are often difficult to model. The DtN operator of a

prism, even with very few expansion functions, could for instance be used as a

transition between the regular grid and an oblique material boundary, such that

the boundary conditions could be enforced with greater accuracy than on the

original staircase representation of the surface.
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APPENDIXA

Conference Papers

A.1 Design and Simulation of On-Chip Lossy

Transmission Line Pairs [1]

Thomas Demeester and Daniël De Zutter

⋆ ⋆ ⋆

A quasi-TM reciprocity based multiconductor transmission line model is used

to investigate the influence of the geometry on the performance of on-chip

transmission line pairs for high-frequency differential signal transmission. It

is shown that both the knowledge of the fundamental transmission line modes

and of the internal impedance of both connected circuits, are essential for a

good design.

A.1.1 Introduction

In the design of very large scale integration (VLSI) circuits, wave phenomena on in-

terconnects are becoming responsible for significant signal integrity problems, due to

the always increasing frequencies. Commonly used at the highest frequencies is the

technique of differential signaling in order to reduce the impact of electromagnetic

noise and coupling with neighboring circuits. This means long interconnects have to

be modeled as multi-conductor transmission lines. Only few electromagnetic mod-

els for the determination of the fundamental propagation modes allow the combined

simulation of the finite conductivity of both the signal lines and the semiconducting

substrate. An accurate quasi-TM two-dimensional model has been proposed in [2],

for the case of a single conductor. Based on power considerations, the current in the

transmission line equivalent was proven to be a suitably weighted combination of the

current in the signal line and the current through the substrate. The theory of [2] can
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Figure A.1: On-chip transmission line structure with signal conductor pair (c1, c2). All di-
mensions are in micrometers.

be extended to the multi-conductor case, provided mode reciprocity is invoked in-

stead of the conservation of power. A rigorous derivation of such a multi-conductor

model within the quasi-TM frequency range is given in [3]. The use of the Dirichlet to

Neumann boundary operator leads to a pure boundary integral equation formulation,

allowing the fast simulation of complex configurations. In this paper we propose some

design criteria, based on the transmission line properties of differential lines in combi-

nation with the circuit impedances of source and load. The propagation characteristics

of the lines will be determined by using the model from [3].

A.1.2 Design of a Differential Pair

Consider the two-dimensional structure shown in Fig. A.1, with a conductor pair

(c1, c2) embedded in a dielectric layer on a semiconducting substrate, above a perfect

electric conducting (PEC) ground. PEC walls are used to simulate a wide slab. A ref-

erence conductor (cR), kept on zero volt, and some neighboring conductors (c3 − c5)

are also shown on Fig. A.1. The signal pair (c1, c2) is, e.g., needed to transmit high-

frequency signals from a chip input amplifier to the output buffer. For a fixed line

length of 960µm, we will optimize the geometry parameters (wS, t, h, wR, d) in

order to minimize wave effects.

The quasi-TM modal analysis of the signal lines leads to the capacitance and con-
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Figure A.2: Left axis: odd mode SWF, for wS = 0.6, h = 5.5, wR = 16, d = 19.2 (all in
µm), and for different values of t. Right axis: normalized differential signal current |(ic1 −
ic2)/i0|, induced by a current i0 through conductor c5.

ductance matrices (per unit length) C and G, and the inductance and resistance ma-

trices L and R. The lines c3, c4 and c5 are, e.g., used to feed certain circuits with

current. Here, we force their current to zero (which is a good approximation for

high input impedance circuits), such that the 5 × 5 circuit matrices can be reduced

to 2 × 2 matrices, relating voltages and currents on the signal lines only w.r.t. the

reference conductor cR (except for Fig. A.2, when the influence of line c5 is investi-

gated). The propagation constants are then found as the square root of the eigenvalues

of −(jωC + G)(jωL + R). For a perfectly symmetric configuration, the circuit ma-

trices would have equal diagonal entries (subscript s) and equal off-diagonal entries

(subscript m). The differential mode propagation constant βd, corresponding to an

e−jβdz+jωt field dependence, would be given by

β2
d = −

(

jω(Ls − |Lm|) + (Rs −Rm)
)

·
(

jω(Cs + |Cm|) + (Gs −Gm)
)

(A.1)

The configuration of Fig. A.1 is not perfectly symmetric with respect to the dashed

line in Fig. A.1, but still the actual propagation constants agree with an almost entirely

‘odd’, resp. an ‘even’mode. Hence, (A.1) can be used to explain the line properties for

a differential excitation. On the one hand, we want to minimize the odd mode slow-

wave factor (SWF), determined as Re(βd/k0) (with k0 the free space wave number),

and the attenuation−Im(βd). The line then becomes electrically shorter (as the modal
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Figure A.3: Left axis: odd mode SWF, for h = 5.5, wR = 16, d = 19.2, and t = 2 (all in
micrometers), and for different values of wS. Right axis: diff. characteristic line impedance

|Zdiff |.

wave length is inversely proportional to the SWF), and wave effects are reduced. On

the other hand, the differential characteristic impedance Zdiff of the line,

Zdiff = 2
√

(

jω(Ls − |Lm|) + (Rs −Rm)
)

/
(

jω(Cs + |Cm|) + (Gs −Gm)
)

(A.2)

should remain large enough, to prevent the input impedance seen by the source from

becoming too small, which in turn would lead to an unacceptable voltage drop.

In the following, we will briefly discuss some of our results. Both the attenuation

and the SWF decrease by increasing the distance t between both signal conductors

(see Fig. A.2 for the SWF, the attenuation is not shown). However, t has to remain

much smaller than the distance d to the nearest neighboring circuits or lines. As

an illustration, we excite c5 with a current i0, while keeping c1 and c2 on zero volt.

Fig. A.2 shows the absolute value of the induced differential current component (ic1
−

ic2
) through the signal conductors. An increase in t results in a higher induced current.

Obviously, the effect is weaker for larger values of d. Increasing the width wS of

the signal conductors leads to a lower SWF and a lower attenuation. However, the

SWF does not change much further, as soon as Rs becomes lower than jωLs for the

highest relevant frequencies (as is the case for wS = 8.0 m in Fig. A.3). Further

widening the conductors only leads to a lower Zdiff , as shown in Fig. A.3. Fig. A.4

shows how the signal lines are used in a source-load configuration. For typical but
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simplified (frequency-independent) impedances, the complex differential load voltage

Vd is shown, with the frequency as a parameter. For wS = 0.5µm, the SWF and

attenuation are higher than for wS = 2µm, due to the larger line resistance. For

wS = 8µm, Vd is again lower, due to the decreased line impedance.

Analogous considerations regarding the SWF and Zdiff , show that it is not rec-

ommended to increase wR such that c1 and c2 become situated directly above the

reference conductor, and that the height h of the signal lines above the semiconduct-

ing substrate should be as large as possible.

A.1.3 Conclusion

It is shown how the performance of an on-chip differential pair interconnect depends

on its geometry, considering both the transmission line properties and the circuits,

connected by the lines.
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A.2 Modeling the Broadband Resistive and

Inductive Behavior of Polygonal Conductors [4]

Thomas Demeester and Daniël De Zutter

⋆ ⋆ ⋆

This paper describes an accurate method to discretize the Dirichlet to Neu-

mann boundary operator for a convex polygonal conductor. The technique is

based on an expansion of the boundary value of the current density. Because

the corresponding expansion functions exhibit the exact current behavior inside

the conductor, they ensure a very good accuracy up to skin effect frequencies.

In combination with a classical boundary integral method and the Method of

Moments, the Dirichlet to Neumann technique allows for a direct determina-

tion of the resistive and inductive properties of transmission line configurations

constructed from these conductors, as is illustrated with some numerical exam-

ples.

A.2.1 Introduction

For accurate signal integrity simulations of interconnect structures, both on the printed

circuit board (PCB) level as on-chip, a good conductor model is indispensable. On the

one hand, the finite conductivity, thickness and the exact conductor shape have to

be rigorously modeled, in order to calculate the transmission line parameters of the

considered interconnections, see [5, 6]. On the other hand, the interconnections can

be treated with the quasi-TM approximations of Maxwell’s equations [2, 3], which

assume that the dimensions of the transverse cross-section of the considered inter-

connections are sufficiently smaller than the substrate wavelength, such that wave

phenomena only occur in the longitudinal direction.

The current crowding effect inside a conductor, from DC to tens of GHz, can be

described by means of the surface admittance operator Y , introduced in [7], which is
calculated by means of the Dirichlet to Neumann boundary operator of the conductor.

To determine the per unit length resistance matrix R and the inductance matrix L of a

particular transmission line configuration, the conductors are replaced by an equiva-

lent surface current density on its boundary c, residing in the background medium.

Starting from the conductor’s geometry and material properties, the surface admit-

tance operator Y relates the boundary value of the longitudinal electric field ez with

the equivalent surface current density jeq,

jeq(r) =

∮

c

Y(r, r′) ez(r
′) dc′, r ∈ c. (A.3)

A second relationship between equivalent sources and fields is found using the Green’s
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function of the background medium, and allows to determine the fields with the

Method of Moments.

Originally, the surface admittance matrix Y (as the matrix discretization of Y)
could only be calculated for geometries of which the Dirichlet eigenfunctions are

known [3, 7], or combinations of these [6, 8]. In [9] we introduced the Iterative Com-

bined Waveguide Modes (ICWM) algorithm, to calculate Y for triangles, for which

the Dirichlet eigenfunctions are not readily available, based on an expansion of ez in

waveguide modes inside the triangle.

Section A.2.2 of the current paper shows how the ICWM method can be extended

to arbitrary convex polygons, such that these no longer have to be modeled as com-

binations of triangles. A possible application is modeling on-chip conductors, which

often have a trapezoidal cross-section, due to underetching during the manufacturing

process. In Section A.2.3, some simulation results are shown, focussing on the influ-

ence of the finite conductivity and of the conductor’s shape. Finally, Section A.2.4

formulates some conclusions.

A.2.2 The Dirichlet to Neumann Operator of a Convex Polygon

The surface admittance operator Y of a 2-D conductor P is given by

Y(r, r′) =
1

jωµ0

(

D(r, r′) −D0(r, r
′)

)

(A.4)

with the Dirichlet to Neumann (DtN) operatorD defined for a quantity ψ by

∂ψ(r)

∂n
=

∮

c

D(r, r′)ψ(r′) dc′, r ∈ c (A.5)

for ψ satisfying

∇2
tψ = −k2 ψ(r), r ∈ P (A.6)

with k2 = −jωµ0σ and ∂/∂n the outward pointing normal derivative on c. The DtN

operatorD0 also satisfies (A.5) and (A.6), but with k = 0.

The considered conductor P is the convex polygon with boundary c shown in

Fig A.5. P has ν sides si (with length li) and corners ci (i = 1, . . . , ν). A local

coordinate system (xi, yi) is associated with each side si, see Fig A.5. The distance

from a side si to its farthermost corner point of P is called hi.

In order to discretize (A.5), ψ is expanded on P as

ψ(r) =

ν
∑

i=1

ψ(i)(xi, yi), r ∈ P (A.7)

in which each term is expressed in terms of the coordinate system (xi, yi), associated



A.2 The DtN Operator of Polygonal Conductors 155

s1

s2

sν−1

sν

· · ·

· · ·

c1
c2

h1

hν

cν−1

cν

P

x1

y1

x2
y2

xν

yν

Figure A.5: Convex polygon P .

with side si. The subfunctions ψ
(i) are given by

ψ(i)(xi, yi) =

Ni
∑

n=0

Aci,n fci,n(xi, yi) (A.8)

with

fci,0(xi, yi) =
(

ejβi,0yi − e−jβi,0(yi−2hi)
)

× cos
πxi

2li
(A.9)

fci,n(xi, yi) =
(

ejβi,nyi − e−jβi,n(yi−2hi)
)

× sin
nπxi

li
, n > 0 (A.10)

and

β2
i,0 = k2 −

( π

2 li

)2

(A.11)

β2
i,n = k2 −

(nπ

li

)2

, n > 0. (A.12)

with the square root of β2
i,n chosen such that Im(βi,n) > 0. The number of terms

Ni in ψ
(i) should be large enough for an accurate representation of ψ on side si.

It is observed that the expansions (A.8) all satisfy (A.6), but are overcomplete on

side si. The ν terms for n = 0 are however necessary to ensure the correct value in

the corners, where the sine expansion of the terms for n > 0 does not converge and

would otherwise lead to an important Gibbs phenomenon.

First, the coefficients Aci,0 are determined. Their determination is quite more
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involved for a general polygon than for a triangle [9], because the functions fci,0 are

(1−ejβi,02hi) in ci and zero in ci+1 (or c1 for i = ν), but also non-zero in (ν−3) of the

remaining corner points, such that they interfere with one another. The superposition

of the functions fci,0 in each of the corners must equal the actual corner value of ψ, or

[

ν
∑

i=1

Aci,0 fci,0

]

cj

= ψcj
, j = 1, . . . , ν (A.13)

which leads to a matrix relationship between the coefficientsAci,0 (taken together into

the column vector A0) and the corner values ψcj
(in vectorΨ0)

F0 A0 = Ψ0. (A.14)

Inversion of the ν× ν matrix F0 yields the coefficientsAci,0 for an arbitrary boundary

value of ψ. The matrix is well-conditioned because, at DC, the expansion functions

fci,0 decrease linearly inside P to reach zero at the corner the farthest away from side

si, and they decrease exponentially when the diffusion term in (A.6) starts playing a

role. In other words, the fact that F0 is well-conditioned, is analogous to the good

convergence properties of the ICWM scheme, as motivated in [9].

In a second step, the remaining function “ψ minus the contribution of the fci,0”

is expanded using the general functions fci,n (n > 0). The expansion is convergent

everywhere, because the expanded function has identical zero corner values. The

reason why instead of sine boundary functions, a cosine expansion cannot be used

(although well-convergent on the corners), is that their normal derivative would not

always converge (e.g., for 90◦ angles).

The functions Aci,n fci,n (n > 0) can be interpreted as modes of parallel plate

waveguides, perpendicular to the sides and with the plates through the end points.

Their amplitude for an arbitrary boundary value of ψ on c can be determined by means

of the ICWM algorithm, as introduced in [9].

Once the expansions (A.8) are fully determined in terms of a general boundary

value of ψ, the normal derivative of the subfunctions leads to ∂ψ/∂n on c, and via

(A.5) to the DtN operator.

The reason why the algorithm is only robust for convex polygons, are the expo-

nential functions in (A.10) which would increase rapidly for any yi < 0, and the

numerical results would no longer be accurate. However, non-convex structures can

be handled by combining the DtN matrices of convex subregions, as described in [8].

In the special case of a rectangular conductor, the different subfunctions ψ(i) do

not interfere, and the situation simplifies to the case described in [8], which uses the

modes of two perpendicular parallel plate waveguides.
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Figure A.6: Three signal lines (c1, c2, c3) and one reference line (c4), all Al-oxide (σ =
35.7MS/m). All dimensions are in micrometers.

A.2.3 Numerical Results

Consider the four line configuration shown in Fig. A.6, consisting of three trapezoidal

signal conductors and a rectangular reference conductor.

Here, we concentrate on the inductance and resistance values. In the quasi-TM

limit these values do not depend on the (layered) dielectric background medium in

which they reside (provided this medium is not a semi-conductor with a high conduc-

tivity).

In Fig. A.7 and A.8, some of the resistance and inductance elements of the struc-

ture are presented. The solid lines are the results for the trapezoidal conductor con-

figuration. They are compared to the analogous case with rectangular signal conduc-

tors (actually squares with a side length of 1 µm, and hence the same cross-sectional

area), indicated in dashed lines. The results for the rectangular conductors were taken

from [7], where their calculation was based on the Dirichlet expansion of ez in the

conductors. As a verification, the transmission line parameters of the square signal

lines were also calculated with the ICWM algorithm and yielded identical results,

confirming the accuracy of the ICWM method.

The resistance elements are very similar for both configurations. However, a sur-

prising result is observed for the high-frequency self-resistance. Note that onlyR11 is

shown here (corresponding to the left conductor of Fig. A.6), being identical to R33

and comparable with R22 (which would overload the figure). The self-resistance of

the trapezoidal conductors becomes higher than for the rectangular lines, as soon as

current crowding starts to appear (the difference is about 5% at the highest shown fre-

quency). One would expect the opposite behavior whereby the rectangular conductor

with the shortest perimeter would have the highest resistance at skin effect frequen-

cies. The reason for the observed phenomenon is the particular current distribution

near the sharp corners of the trapezoidal lines, which still has an important influence

on the overall behavior at the shown frequencies. A detailed current distribution will

be given at the oral presentation.

The inductance elements are shown in Fig. A.8. At the highest frequencies, they

are compared to the analogous configurations with perfect electric conductors, again
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trapezoidal conductors

rectangular conductors

frequency (Hz)

108 1010 1012
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104
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R13

Figure A.7: Resistance elements R11, R12 and R13 (in Ω/m) for the configuration of Fig. 2
with the trapezoidal signal conductors (solid lines), and with the rectangular conductors (dashed

lines; data from [7]).

for both the trapezoidal and the rectangular signal lines case. The values for perfect

conductors are the limiting values for their finite conductivity counterparts, when the

frequency goes to infinity and they are shown as the horizontal lines at the highest

frequencies in Fig. A.8. The self-inductance L11 is, over the whole frequency range,

lower for the trapezoidal conductors. This is due to the fact that the proximity effect

of the ground conductor is more dominant for the wider lower side of the trapezoidal

conductor as compared to the rectangular case. A similar phenomenon leads to the

slightly lower mutual inductance between the trapezoidal signal lines, but also to an

increased capacitive coupling.

A.2.4 Conclusion

This paper introduces an extension of the Iterative Combined Waveguide Modes al-

gorithm, to discretize the Dirichlet to Neumann operator on polygonal conductors, in

order to calculate their surface admittance matrix. This allows to take into account

their exact shape and material properties in the interconnect characterization, from

DC up to skin effect frequencies. In some numerical examples, it was seen how the
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trapezoidal conductors

rectangular conductors

frequency (Hz)

108 1010 1012
0

250

500 Inductance elements (nH/m)

L11

L12

L13

Figure A.8: Inductance elements L11, L12 and L13 (in nH/m) for the configuration of Fig. 2

with the trapezoidal signal conductors (solid lines), and with the rectangular conductors (dashed

lines; data from [7])

broadband behavior of trapezoidal conductors was influenced by the corner effect,

with respect to rectangular conductors, or with respect to their perfectly conducting

trapezoidal counterparts.
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APPENDIXB

Analytical Calculation of

Quasi-Static Interactions

in Free Space

B.1 Introduction

This Appendix describes how the quasi-static Green’s function’s interactions in two

dimensions and in free space can be calculated analytically. The considered numerical

method is a boundary integral equation formulation of Maxwell’s equations, using the

Method of Moments with piecewise linear basis functions and a Galerkin weighting

procedure (see, e.g., [1]). An analytical calculation of the interaction integrals is only

required for the so-called self-patch and the neighbor-patch cases (where both required

integrations cover the same, respectively, adjacent segments in space). However, it

turns out that the method presented here allows a fast analytical integration of all

interaction integrals, as compared to the traditional numerical quadrature techniques.

In [2], the special case of two segments with a common corner point (includ-

ing the self-patch case) is treated analytically. However, in complex configurations

where several materials have common boundaries, a more general treatment is desir-

able. This allows for a more straightforward discretization of the field quantities on

the boundaries, in the sense that adjacent materials no longer need exactly the same

discretization on their common boundary. Note that in [2], the full wave Green’s func-

tion of free space is employed. The interactions are calculated in two steps. First,

the singularity is extracted, for which the nearest interactions have to be calculated

analytically. In a second step, the remaining terms can be treated numerically without

any difficulties. The extracted singular term equals the quasi-static Green’s function.

The method given below is therefore not only relevant for quasi-TM approximative

methods, but also for full-wave calculations in two dimensions.
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A direct implementation of the formulas given below was used for the final simu-

lation of Chapter 4 and for the examples given in Chapter 5.

B.2 Interaction Integrals

In order to calculate the interaction between two line segments [rp, rp+1] and [rq, rq+1],

described by

r ↔ rp + s
(

rp+1 − rp

)

(B.1)

r
′ ↔ rq + t

(

rq+1 − rq

)

, (B.2)

for a piecewise-linear boundary discretization of the field quantities, and with the

quasi-static Green’s function of free space

G0(r, r
′) =

1

2π
ln |r − r

′|, (B.3)

following integrals have to be determined

I00 =

∫ 1

0

ds

∫ 1

0

ln |r − r
′| dt (B.4)

I01 =

∫ 1

0

ds

∫ 1

0

t ln |r − r
′| dt (B.5)

I10 =

∫ 1

0

s ds

∫ 1

0

ln |r − r
′| dt (B.6)

I11 =

∫ 1

0

s ds

∫ 1

0

t ln |r − r
′| dt (B.7)

in which

|r − r
′| =

√

(x − x′)2 + (y − y′)2 (B.8)

=
[

(

(xp − xq) + s(xp+1 − xp) − t(xq+1 − xq)
)2

+
(

(yp − yq) + s(yp+1 − yp) − t(yq+1 − yq)
)2

]
1

2

(B.9)

Consider the following map from the two-dimensional space into the complex

plane

r = xux + y uy → z = x+ i y (B.10)

such that |r| = |z|. The results given here can be considered an extension of those
given by Sarkar and Djordjevic in [3], based on an analogous transformation to the
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complex plane, but for one special case only. (B.9) can be written as

|r − r
′| = |z0 + z1 s+ z2 t| (B.11)

with

z0 = (zp − zq) (B.12)

z1 = (zp+1 − zp) (B.13)

z2 = −(zq+1 − zq), (B.14)

with zp, zp+1, zq, zq+1 found from rp, rp+1, rq and rq+1 as in (B.10). Notice that

|z1| 6= 0 and |z2| 6= 0. With

K00
def
=

∫ 1

0

ds

∫ 1

0

ln (z0 + z1 s+ z2 t) dt (B.15)

K01
def
=

∫ 1

0

ds

∫ 1

0

t ln (z0 + z1 s+ z2 t) dt (B.16)

K10
def
=

∫ 1

0

s ds

∫ 1

0

ln (z0 + z1 s+ z2 t) dt (B.17)

K11
def
=

∫ 1

0

s ds

∫ 1

0

t ln (z0 + z1 s+ z2 t) dt (B.18)

the interaction integrals (B.4)-(B.7) can be written as

Iij = Re
[

Kij

]

, with i, j = 0, 1 (B.19)

The complex integralsK00,K01,K10,K11 are determined by integration in the com-

plex plane.

B.3 Determination of K00

The function P00(s, t), defined by

P00(s, t)
def
=

1

2

(z0 + z1 s+ z2 t)
2

z1 z2
ln (z0 + z1 s+ z2 t) −

3

2
s t (B.20)

satisfies
∂2P00(s, t)

∂s ∂t
= ln (z0 + z1 s+ z2 t) (B.21)

where (z0 + z1 s + z2 t) 6= 0. Note that the logarithmic term in P00 becomes zero if

(z0 + z1 s + z2 t) = 0. The numerical value of K00 according to (B.15) can only be

directly found from the function P00(s, t), if the logarithmic function is holomorphic
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over the complete integration area. Consequently, if the branch cut of ln() crosses the

square S ↔ {0 ≤ s ≤ 1, 0 ≤ t ≤ 1}, a correction term Q00 has to be introduced,

such that

K00 =
[

P00(s, t)
]t=1, s=1

t=0, s=0
− Q00. (B.22)

in which the following notation was introduced

[

f(s, t)
]t=t2, s=s2

t=t1, s=s1

def
= f(s2, t2) − f(s2, t1) − f(s1, t2) + f(s1, t1). (B.23)

The correct value ofK00 can be determined by integrating over the whole square S

except for an area that includes the branch cut. The branch cut of the natural logarithm

is, for most numerical tools, taken on (or rather ‘just below’) the negative part of the

real axis, and, for the logarithmic term in P00, becomes

L↔ y0 + s y1 + t y2 = 0 (B.24)

x0 + s x1 + t x2 ≤ 0 (B.25)

This choice is adopted here as well. In order to calculate the correction term Q00, we

will exclude a region with infinitesimal thickness around the straight line L (B.24).

The region where condition (B.25) is not met (corresponding to the positive part of the

real axis in the complex plane) will yield no contribution toQ00. Extra care is required

for special cases, such as, when L passes through a corner of S. In the sequel, we will

therefore carefully enumerate and consider all different geometric possibilities for L.

It should be mentioned that for many applications, most of the possibilities never

occur. For example, if both integration intervals have only one point in common,

this point normally needs to be the end point of one of the segments, in a classical

Method of Moments implementation. But, in order to give a complete solution for the

proposed integrals, each possibility is treated here. The next paragraphs provide the

reader with the solution for each different situation. The comprehensive calculations

that led to them are omitted, as this Appendix only provides a reference for later use.

Consider the (s, t)-plane, with the horizontal axis t = 0 and the vertical axis s = 0.

First, the case with a horizontal or vertical branch cut is treated. Next, the general case

with L neither vertical, nor horizontal is treated. In this case, we can write

L↔ t = t0 +ms , with t0 = −y0
y2
and m = −y1

y2
, (B.26)

with non-zero y1 and y2, such that L intersects with the lines s = 0, s = 1, t = 0, and

t = 1, in the respective (s, t) pairs (0, t0), (1, t1), (s0, 0) and (s1, 1), for

t1 = −y0 + y1
y2

, s0 = −y0
y1
, s1 = −y0 + y2

y1
. (B.27)
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The following auxiliary functions are defined

B0(s, t, y) =
1

2

(z0 + z1 s+ z2 t)
2

z1 z2
jπ sgn(z0 + z1 s+ z2 t, y) (B.28)

B(s, y) =
1

2

(

z0 + z1 s+ z2 (t0 +ms)
)2

z2 (z1 +mz2)

· jπ sgn
(

z0 + z1 s+ z2 (t0 +ms), y
)

, if z1 6= −mz2 (B.29)

=
z0 + z2 t0

z2
s jπ sgn

(

z0 + z2 t0, y
)

, if z1 = −mz2 (B.30)

with the introduction of the function sgn(x, y) with real arguments x and y, defined

by

sgn(x, y) =







1 if x < 0 and y ≥ 0

−1 if x < 0 and y < 0

0 otherwise

(B.31)

Notice that Im
(

z0 + z1 s + z2 (t0 + ms)
)

≡ 0, such that the first argument of sgn

in B(s, y) is real indeed. For B0(s, t, y) as well, s and t will be chosen such, that the

first argument of sgn always remains real.

B.3.1 CASE 1: branch cut horizontal or vertical

When L is horizontal (y1 = 0), we find

• t0 = 0

Q00 =
[

B0(s, t0, y)
]y=y2, s=1

y=0, s=0
(B.32)

• 0 < t0 < 1

Q00 =
[

B0(s, t0, y)
]y=y2, s=1

y=−y2, s=0
(B.33)

• t0 = 1

Q00 =
[

B0(s, t0, y)
]y=0, s=1

y=−y2, s=0
(B.34)

When L is vertical (y2 = 0), we find

• s0 = 0

Q00 =
[

B0(s0, t, y)
]y=y1, t=1

y=0, t=0
(B.35)
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• 0 < s0 < 1

Q00 =
[

B0(s0, t, y)
]y=y1, t=1

y=−y1, t=0
(B.36)

• s0 = 1

Q00 =
[

B0(s0, t, y)
]y=0, t=1

y=−y1, t=0
(B.37)

B.3.2 CASE 2: L through a corner of S

The second considered case encompasses the situations in which L goes through at

least one corner of S, and is neither vertical, nor horizontal.

• L through lower left corner (t0 = 0, s0 = 0)

– t1 < 0 (orm < 0)

Q00 =
[

B0(s0, t0, y)
]y=0

y=y1

(B.38)

– 0 < t1 < 1 (or 0 < m < 1)

Q00 =
[

B0(s0, t0, y)
]y=0

y=y1

+
[

B(s, y)
]y=y2, s=1

y=−y2, s=0
(B.39)

– t1 = 1 (orm = 1)

Q00 =
[

B0(s0, t0, y)
]y=0

y=y1

+
[

B(s, y)
]y=y2, s=1

y=−y2, s=0

+
[

B0(s1, t1, y)
]y=0

y=−y1

(B.40)

– t1 > 1 (or 0 < s1 < 1)

Q00 =
[

B0(s0, t0, y)
]y=0

y=y1

+
[

B(s, y)
]y=y2, s=s1

y=−y2, s=0

+
[

B0(s1, 1, y)
]y=y1

y=−y1

(B.41)

• L through upper right corner (t1 = 1, s1 = 1)
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– t0 < 0 (orm > 1)

Q00 =
[

B0(s0, 0, y)
]y=−y1

y=y1

+
[

B(s, y)
]y=y2, s=1

y=−y2, s=s0

+
[

B0(s1, t1, y)
]y=0

y=−y1

(B.42)

– 0 < t0 < 1 (or 0 < m < 1)

Q00 =
[

B(s, y)
]y=y2, s=1

y=−y2, s=0
+

[

B0(s1, t1, y)
]y=0

y=−y1

(B.43)

– t0 > 1 (orm < 0)

Q00 =
[

B0(s1, t1, y)
]y=0

y=−y1

(B.44)

• L through lower right corner (t1 = 0, s0 = 1)

– s1 < 0 (or −1 < m < 0)

Q00 =
[

B(s, y)
]y=y2, s=1

y=−y2, s=0
+

[

B0(s0, t1, y)
]y=−y1

y=0
(B.45)

– s1 = 0

Q00 =
[

B0(s1, t0, y)
]y=y1

y=0
+

[

B(s, y)
]y=y2, s=1

y=−y2, s=0

+
[

B0(s0, t1, y)
]y=−y1

y=0
(B.46)

– 0 < s1 < 1

Q00 =
[

B0(s1, 1, y)
]y=y1

y=−y1
+

[

B(s, y)
]y=y2, s=1

y=−y2, s=s1

+
[

B0(s0, t1, y)
]y=−y1

y=0
(B.47)

– s1 > 1

Q00 =
[

B0(s0, t1, y)
]y=−y1

y=0
(B.48)

• L through upper left corner (s1 = 0, t0 = 1)
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– t1 < 0

Q00 =
[

B0(s1, t0, y)
]y=y1

y=0
+

[

B(s, y)
]y=y2, s=s0

y=−y2, s=0

+
[

B0(s0, 0, y)
]y=−y1

y=y1

(B.49)

– 0 < t1 < 1

Q00 =
[

B(s, y)
]y=y2, s=1

y=−y2, s=0
+

[

B0(s1, t0, y)
]y=y1

y=0
(B.50)

– t1 > 1

Q00 =
[

B0(s1, t0, y)
]y=−y2

y=0
(B.51)

B.3.3 CASE 3: L through two opposite sides

(not through corners)

• 0 < t0 < 1 and 0 < t1 < 1

Q00 =
[

B(s, y)
]y=y2, s=1

y=−y2, s=0
(B.52)

• 0 < s0 < 1 and 0 < s1 < 1

Q00 =
[

B0(s1, 1, y)
]y=y1

y=−y1

+
[

B(s, y)
]y=y2, s=max (s0,s1)

y=−y2, s=min (s0,s1)

+
[

B0(s0, 0, y)
]y=−y1

y=y1

(B.53)

B.3.4 CASE 4: L through two adjacent sides (not through cor-

ners)

• 0 < s0 < 1 and 0 < t1 < 1

Q00 =
[

B(s, y)
]y=y2, s=1

y=−y2, s=s0

+
[

B0(s0, 0, y)
]y=−y1

y=y1

(B.54)

• 0 < t0 < 1 and 0 < s1 < 1

Q00 =
[

B(s, y)
]y=y2, s=s1

y=−y2, s=0
+

[

B0(s1, 1, y)
]y=y1

y=−y1

(B.55)
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• 0 < t0 < 1 and 0 < s0 < 1

Q00 =
[

B(s, y)
]y=y2, s=s0

y=−y2, s=0
+

[

B0(s0, 0, y)
]y=−y1

y=y1

(B.56)

• 0 < t1 < 1 and 0 < s1 < 1

Q00 =
[

B(s, y)
]y=y2, s=1

y=−y2, s=s1

+
[

B0(s1, 1, y)
]y=y1

y=−y1

(B.57)

B.4 Determination of K01, K10, and K11

For the integrals given by (B.16), (B.17), and (B.18), analogous functions P , B and

B0 can be found, such that (B.22) and (B.32)-(B.57) remain valid, with a modified

subscript (respectively, ‘01’, ‘10’, and ‘11’ instead of ‘00’), because the new inte-

grands still contain the same branch cut.

B.4.1 Auxiliary functions for K01

P01(s, t) = −1

6

(z0 + z1 s− 2 z2 t) (z0 + z1 s+ z2 t)
2

z1 z2
2

ln (z0 + z1 s+ z2 t)

+
s t

12 z2
(2 s z1 − 7 t z2 + 4 z0) (B.58)

B0(s, t, y) = −1

6

(z0 + z1 s− 2 z2 t) (z0 + z1 s+ z2 t)
2

z1 z2
2

jπ sgn
(

z0 + z1 s+ z2 t, y
)

(B.59)

B(s, y) = −1

6

(

z1
(

z0 + z1 s− 2z2 t0
)

+mz2
(

2 z0 − z2 (t0 +ms)
)

)

(

z0 + z1 s+ z2 (t0 +ms)
)2

z2
2 (z1 +mz2)2

· jπ sgn
(

z0 + z1 s+ z2 (t0 +ms), y
)

, if z1 6= −mz2 (B.60)

= −1

2

(

z0 − z2 (ms+ t0)
) (

z0 + z2 t0
)

z2
2

s jπ sgn
(

z0 + z2 t0, y
)

, if z1 = −mz2 (B.61)
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B.4.2 Auxiliary functions for K10

P01(s, t) = −1

6

(z0 − 2 z1 s+ z2 t) (z0 + z1 s+ z2 t)
2

z2
1 z2

ln (z0 + z1 s+ z2 t)

+
s t

12 z1
(−7 s z1 + 2 t z2 + 4 z0) (B.62)

B0(s, t, y) = −1

6

(z0 − 2 z1 s+ z2 t) (z0 + z1 s+ z2 t)
2

z2
1 z2

· jπ sgn
(

z0 + z1 s+ z2 t, y
)

(B.63)

B(s, y) = −1

6

(

z0 − 2 z1 s+ z2 (t0 − 2ms)
) (

z0 + z1 s+ z2 (t0 +ms)
)2

z2 (z1 +mz2)2

· jπ sgn
(

z0 + z1 s+ z2 (t0 +ms), y
)

, if z1 6= −mz2 (B.64)

=
1

2

(z0 + z2 t0)

z2
s2 jπ sgn

(

z0 + z2 t0, y
)

, if z1 = −mz2 (B.65)

B.4.3 Auxiliary functions for K11

P11(s, t) = − 1

24

(3 s2 z2
1 + 2 z0 s z1 − 6 t s z1 z2 + 3 z2

2 t
2 − z2

0 + 2 z0 z2 t) (z0 + z1 s+ z2 t)
2

z2
1 z

2
2

· ln (z0 + z1 s+ z2 t)

+
s t

48 z1 z2
(−9 s t z1 z2 + 10 s z0 z1 + 10 t z0 z2 + 6 t2 z2

2 + 2 z2
0 + 6 s2 z2

1) (B.66)

B0(s, t, y) = − 1

24

(3 s2 z2
1 + 2 z0 s z1 − 6 t s z1 z2 + 3 z2

2 t
2 − z2

0 + 2 z0 z2 t) (z0 + z1 s+ z2 t)
2

z2
1 z

2
2

· jπ sgn(z0 + z1 s+ z2 t, y)

B(s, y) = − 1

24
F (s)

(

z0 + z1 s+ z2(t0 +ms)
)2

z2
2 (z1 +mz2)3

· jπ sgn
(

z0 + z1 s+ z2 (t0 +ms), y
)

, if z1 6= −mz2 (B.67)

=
1

12

(3 z2 t0 + 4msz2 − 3 z0) (z0 + t0 z2)

z2
2

s2

· jπ sgn
(

z0 + z2 t0, y
)

, if z1 = −mz2 (B.68)

with
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F (s) = 3 (z1 −mz2) (z1 +mz2)
2 s2

+2 (z1 +mz2) (z0 z1 − 3 t0 z1 z2 + 3mz0 z2 − t0mz2
2) s

−(z0 + t0 z2) (z0 z1 − 3 t0 z1 z2 + 3mz0 z2 − t0mz2
2) (B.69)
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APPENDIXC

Calculation of the

Surface Admittance Matrix

on a Rectangular

3-D Conductor

This Appendix describes how the full-wave surface admittance operator can be calcu-

lated on the surface of a rectangular parallelepiped, by expanding the internal fields

into the superposition of the modal fields inside three waveguides with a different

orientation. The basic field expansions are written down here, but working out the

Galerkin weighting procedure with a specific type of basis functions would lead to

numerous pages with formulas that are not relevant within the framework of this dis-

sertation, and these calculations are therefore left out.

C.1 Introduction

Consider a straight 3-D conductor (or dielectric body), more specifically a homoge-

neous isotropic rectangular parallelepided P ↔ 0 ≤ x ≤ x0 , 0 ≤ y ≤ y0 , 0 ≤
z ≤ z0 with material parameters (ǫ, µ, σ). The purpose is to find a linear relationship

between the tangential electric and magnetic fields, etan,0 and htan,0, on its boundary

∂P , written as

un × htan(r′) =

∫∫

∂P

A(r′, r′′) etan(r′′) dS′′ (C.1)
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with un the outward pointing normal unit vector. The operatorA0 constitutes a simi-

lar relationship for the fields on the boundary of P , but this time filled with the back-

ground material. The differential surface admittance operator Y is constructed as
Y = A−A0, such that

un × (htan(r′) − htan,0(r
′)) =

∫∫

∂P

Y(r′, r′′) etan(r′′) dS′′ (C.2)

with htan,0 the tangential magnetic field in the case of P filled with the background

medium, but corresponding to the original tangential electric field on the boundary

etan,0 = etan.

The left-hand side of (C.1) can be constructed as the superposition of three field

contributions. These are found by considering three rectangular PEC waveguides,

aligned along, respectively, the z, x, and y direction. In each case two opposite sides

of P form the open ends of the waveguide, while the remaining four planes consti-

tute the PEC mantle. These waveguides are shown together with the conductor P in

Fig. C.1. The field excitation of each of these waveguides corresponds to the origi-

nal tangential electric field on the two opposite sides of P that correspond with the

open ends of the considered waveguide. Along the mantle of the PEC waveguide it-

self, the tangential electric field is identically zero. Hence, by construction, the total

tangential electric field on the boundary of P is the superposition of the total tangen-

tial electric fields on P , as found by analysing the three different waveguides. As

a consequence, the superposition of the total tangential magnetic fields for the three

waveguides constitutes the total tangential magnetic field, which leads to the surface

admittance matrix.

Here, only the z-directed waveguide is considered, as both other situations are

perfectly analogous. The fields are derived as an expansion in the 2-D electric and

magnetic eigenvectors of the transverse (x, y) dependence and with an exact z behav-

ior, instead of as a superposition of the 3-D eigenvectors.

C.2 Field Expansions in a PEC Waveguide

In this section, we will derive an expression for the total electric andmagnetic fields in-

side a general cylindrical z-directed PEC waveguide (with known Dirichlet and Neu-

mann eigenfunctions), from the knowledge of the transverse electric field on z = 0

and z = z0 only. Further on, the analysis will be restricted to a rectangular paral-

lelepiped.
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Figure C.1: Schematic presentation of the rectangular parallelepiped P , and the three rectan-
gular PEC waveguides, of which the superposition of their inside fields forms the total fields

inside P .

C.2.1 Electric and Magnetic Eigenvectors

The field expansions are based on the following eigenfunctions and eigenvectors (with

S defined by 0 ≤ x ≤ x0, 0 ≤ y ≤ y0, and c its boundary):

• Orthonormal Dirichlet eigenfunctions ξm(x, y) with eigenvalues µ2
m, satisfying

∇2
t ξm = −µ2

mξm on S (C.3)

ξm = 0 on c (C.4)

• OrthonormalNeumann eigenfunctionsψṁ(x, y)with eigenvalues τ2
ṁ satisfying

∇2
tψṁ = −τ2

ṁψṁ on S (C.5)

∂nψṁ = 0 on c (C.6)

A dotted index ṁ is used to distinguish the Neumann index from the Dirichlet

index m. Note that the indices m and ṁ in a rectangular cross-section each

stand for a ‘double’ index.

• Orthogonal 2-D electric eigenvectors fm(x, y) and eṁ(x, y)
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– irrotational: fm = ∇tξm

– solenoidal: eṁ = uz ×∇tψṁ (single-bounded)

satisfying

∫∫

S

fm ·eṅ dS = 0 ,

∫∫

S

fm ·fn dS = µ2
m δmn ,

∫∫

S

eṁ ·eṅ dS = τ2
ṁ δṁṅ

(C.7)

• Orthogonal 2-D magnetic eigenvectors gṁ(x, y) and hm(x, y)

– irrotational: gṁ = ∇tψṁ

– solenoidal: hm = uz ×∇tξm

satisfying

∫∫

S

gṁ·hn dS = 0 ,

∫∫

S

gṁ·gṅ dS = τ2
ṁ δṁṅ ,

∫∫

S

hm·hn dS = µ2
m δmn

(C.8)

C.2.2 Field Expansions

We start from the 3-D field equations, with k2 = −jωµ (jωǫ+ σ), written in terms

of their transversal and longitudinal parts

∇tez −
∂et

∂z
= −jωµ (uz × ht) (C.9)

∇t × et = −jωµhzuz (C.10)

∇thz −
∂ht

∂z
= − k2

jωµ
(uz × et) (C.11)

∇t × ht = − k2

jωµ
ezuz, (C.12)

Longitudinal Fields

We expand ez and hz by separation of variables as

ez(x, y, z) =
∑

m

am(z) ξm(x, y) (C.13)

hz(x, y, z) =
∑

ṁ

bṁ(z)ψṁ(x, y) (C.14)
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because (C.11) shows that on the PEC walls, ez = 0 and ∂nhz = 0 (because ∂nhz =

∂zhn which is zero on the PEC), and such that

am(z) =

∫∫

S

ez ξm dS and bṁ(z) =

∫∫

S

hz ψṁ dS (C.15)

For a careful analysis, we also need to expand∇2
t ez as

∇2
t ez =

∑

m

ăm ξm (C.16)

Because ez and ξm are zero on c, we get ăm = −µ2
m am, and (C.16) becomes

∇2
t ez = −(∂zz + k2) ez =

∑

m

−(∂zz + k2) am ξm, (C.17)

due to the orthogonality of the Dirichlet functions. We find

µ2
m am = (∂zz + k2) am (C.18)

and analogously, since ∂nψṁ and ∂nhz are zero on c,

τ2
ṁ bṁ = (∂zz + k2) bṁ. (C.19)

Solving (C.18) and (C.19) leads to

am(z) = A+
m e−jβmz +A−

m ejβmz , with β2
m = k2 − µ2

m (C.20)

bṁ(z) = B+
ṁ e−jβ̃ṁz +B−

ṁ ejβ̃ṁz , with β̃2
ṁ = k2 − τ2

ṁ (C.21)

Obviously, βm and β̃ṁ are the wave numbers of the TM, resp. the TE modes.

Transverse Electric Field

We expand the transverse electric field et by means of the electric eigenvectors as

et(x, y, z) =
∑

m

âm(z) fm(x, y) +
∑

ṁ

b̂ṁ(z) eṁ(x, y). (C.22)
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The coefficients can be calculated, using (C.7), as

âm(z) =
1

µ2
m

∫∫

S

et · fm dS

=
1

µ2
m

∮

c

ξm et · un,t dc−
1

µ2
m

∫∫

S

ξm ∇t · et dS

=
1

µ2
m

∫∫

S

ξm ∂zez dS

=
∂zam(z)

µ2
m

(C.23)

b̂ṁ(z) =
1

τ2
ṁ

∫∫

S

et · eṁ dS

=
1

τ2
ṁ

(

∮

c

ψṁ(et × uz) · un,t dc −
∫∫

S

ψṁuz · (∇t × et) dS
)

=
1

τ2
ṁ

∫∫

S

ψṁ jωµhz dS

=
jωµ bṁ(z)

τ2
ṁ

(C.24)

with un,t the unit normal vector to the boundary c of the (x, y)) cross-section. Finally,

we find with (C.20) and (C.21)

âm(z) = − jβm

µ2
m

(

A+
m e−jβmz −A−

m ejβmz
)

(C.25)

b̂ṁ(z) =
jωµ

τ2
ṁ

(

B+
ṁ e−jβ̃ṁz +B−

ṁ ejβ̃ṁz
)

(C.26)

Transverse Magnetic Field

We expand the transverse magnetic field ht by means of the magnetic eigenvectors as

ht(x, y, z) =
∑

ṁ

ǎṁ(z)gṁ(x, y) +
∑

m

b̌m(z)hm(x, y). (C.27)
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The coefficients can be calculated in an analogous way as (C.23) and (C.24), using

(C.7), as

ǎṁ(z) = − jβ̃ṁ

τ2
ṁ

(

B+
ṁ e−jβ̃ṁz −B−

ṁ ejβ̃ṁz
)

(C.28)

b̌m(z) =
k2

jωµµ2
m

(

A+
m e−jβmz +A−

m ejβmz
)

(C.29)

Resulting Field Expansions

The total field expansions consist of the TE modes (with subscript ṁ) and the TM

modes (with subscriptm).

et(x, y, z) =
∑

m

− jβm

µ2
m

(

A+
m e−jβmz −A−

m ejβmz
)

fm(x, y)

+
∑

ṁ

jωµ

τ2
ṁ

(

B+
ṁ e−jβ̃ṁz +B−

ṁ ejβ̃ṁz
)

eṁ(x, y) (C.30)

ez(x, y, z) =
∑

m

(

A+
m e−jβmz +A−

m ejβmz
)

ξm(x, y) (C.31)

ht(x, y, z) =
∑

ṁ

− jβ̃ṁ

τ2
ṁ

(

B+
ṁ e−jβ̃ṁz −B−

ṁ ejβ̃ṁz
)

gṁ(x, y)

+
∑

m

k2

jωµµ2
m

(

A+
m e−jβmz + A−

m ejβmz
)

hm(x, y) (C.32)

hz(x, y, z) =
∑

ṁ

(

B+
ṁ e−jβ̃ṁz +B−

ṁ ejβ̃ṁz
)

ψṁ(x, y) (C.33)

C.3 Discretization of et

The tangential electric field on the ‘front’ side (z = 0, see Fig. C.1) is discretized as

et(x, y, 0) =
∑

i

eF,i bi(x, y) (C.34)

in which the basis functions bi(x, y) on area Si (with boundary ci) are, e.g., pulses

or, preferably, rooftop functions. Note that the basis function bi in (C.34) represents

a double set of vectorial basis functions, each with a corresponding set of field coef-

ficients. One set is directed along x, corresponding to ex, and the other along y, for

the discretization of ey . Weighting (C.34) on z = 0 with the electric eigenvectors and
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invoking (C.22), leads to

∫∫

S

[

∑

i

eF,i bi(x, y) −
∑

m̃

âm̃(0) fm̃(x, y)
]

· fm dS = 0 , ∀m (C.35)

∫∫

S

[

∑

i

eF,i bi(x, y) −
∑

˜̇m

b̂ ˜̇m(0) e ˜̇m(x, y)
]

· eṁ dS = 0 , ∀ṁ (C.36)

such that

âm(0) =
1

µ2
m

∑

i

eF,i

∫∫

Si

bi · fm dS (C.37)

=
1

µ2
m

∑

i

eF,i

(

∮

ci

ξm bi · un dc −
∫∫

Si

ξm ∇t · bi dS
)

(C.38)

b̂ṁ(0) =
1

τ2
ṁ

∑

i

eF,i

∫∫

Si

bi · eṁ dS (C.39)

=
1

τ2
ṁ

∑

i

eF,i

(

∮

ci

ψṁ un · (bi × uz) dc

−
∫∫

Si

ψṁ uz · (∇t × bi) dS
)

(C.40)

Discretizing et on the ‘back’ side (z = z0) with the same basis functions

et(x, y, z0) =
∑

i

eB,i bi(x, y). (C.41)

results in the same formulas as (C.38) and (C.40), but with the coefficients eFi
re-

placed by eBi
.

In order to determine the magnetic field inside P , the coefficients A+
m, A

−
m and

B+
ṁ, B

−
ṁ are required, as seen from (C.33) and (C.32). They are found as a function

of âm(0) and âm(z0), respectively, b̂ṁ(0) and b̂ṁ(z0), via (C.25) and (C.26)

A+
m = − k2

m

jβm

âm(z0) e
−jβmz0 − âm(0)

e−j2βmz0 − 1
(C.42)

A−
m = − k2

m

jβm

(

e−jβmz0

) âm(z0) − âm(0) e−jβmz0

e−j2βmz0 − 1
(C.43)

B+
ṁ =

k2
ṁ

jωµ

b̂ṁ(z0) e
−jβ̃ṁz0 − b̂ṁ(0)

e−j2β̃ṁz0 − 1
(C.44)

B−
ṁ = − k2

ṁ

jωµ

(

e−jβ̃ṁz0

) b̂ṁ(z0) − b̂ṁ(0) e−jβ̃ṁz0

e−j2β̃ṁz0 − 1
(C.45)
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C.4 Weighting of un × h

The expression “un × h” will be concisely denoted as J, as it has the dimension of a

surface current density. It is shown here, how the discretized J is written in terms of

the magnetic field expansion coefficients.

• Front side z = 0 : determine JF = −uz × ht(x, y, 0)

Because of (C.27), JF can be written

JF =
∑

ṁ

ǎṁ(0)gṁ × uz +
∑

m

b̌m(0)hm × uz (C.46)

and is expanded in basis functions bĩ as

JF =
∑

ı̃

JF,̃ı bı̃ (C.47)

with Sĩ on the front side the domain of basis function bĩ, with boundary cĩ. The

Galerkin weighting procedure (with identical test and basis functions) allows to

write, ∀i
∑

ı̃

JF,̃ı

∫∫

Si∩Sı̃

bı̃ · bi dS =
∑

ṁ

ǎṁ(0)

∫∫

Si

(gṁ × uz) · bi dS

+
∑

m

b̌m(0)

∫∫

Si

(hm × uz) · bi dS (C.48)

in which we can calculate the integrals as

∫∫

Si

(gṁ × uz) · bi dS =

∮

ci

ψṁ (uz × bi) · uni
dc

+

∫∫

Si

ψṁ uz · (∇t × bi) dS (C.49)

∫∫

Si

(hm × uz) · bi dS =

∮

ci

ξmbi · un dc−
∫∫

Si

ξm ∇t · bi dS (C.50)

with uni
the outward pointing unit vector, normal to the path ci.

• Ground side x = 0 : determine JG = −ux × ht(0, y, z) + hz(0, y, z)uy
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On the one hand,

JG =
∑

m

−b̌m(z) ∂xξm(0, y)uz

+
∑

ṁ

−ǎṁ(z) ∂yψṁ(0, y)uz + bṁ(z)ψṁ(0, y)uy (C.51)

and on the other hand, we discretize JG as

JG =
∑

ı̃

JG,̃ı bı̃ (C.52)

and the Galerkin procedure leads to

∑

ı̃

JG,̃ı

∫∫

Si∩Sı̃

bı̃ · bi dS =
∑

m

∫∫

Si

(

− b̌m(z) ∂xξm(0, y)uz

)

· bi dS

+
∑

ṁ

∫∫

Si

(

− ǎṁ(z) ∂yψṁ(0, y)uz

+bṁ(z)ψṁ(0, y)uy

)

· bi dS (C.53)

• For the remaining sides, the procedure is very similar and therefore not given
explicitely.

C.5 Further Procedure for a Rectangular Parallelepiped

C.5.1 Eigenfunctions of the Rectangular Cross-Section

For a rectangular cross-section S, the indices m and ṁ are in fact, as already men-

tioned, double indices, and the corresponding Dirichlet and Neumann eigenfunctions

are

ξmn(x, y) =
2√
x0y0

sin
(mπx

x0

)

sin
(nπy

y0

)

(C.54)

ψmn(x, y) =
2√
x0y0

cos
(mπx

x0

)

cos
(nπy

y0

)

(C.55)

ψ0n(x, y) =

√

2

x0y0
cos

(nπy

y0

)

(C.56)

ψm0(x, y) =

√

2

x0y0
cos

(mπx

x0

)

(C.57)
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with m = 1, . . . ,Mx and n = 1, . . . ,My, with Mx and My large enough for an

accurate field expansion. If the Neumann eigenfunctions are written as ψṁṅ, in terms

of the dotted (double) index, the ranges for ṁ and ṅ are ṁ ∈ [0,Mx] and ṅ ∈ [0,My],

with ṁ and ṅ not zero at the same time. The correspondingDirichlet eigenvalues µ2
mn

and the Neumann eigenvalues τṁṅ are equal, and written as k
2
ṁṅ

k2
ṁṅ =

(ṁπ

x0

)2
+

( ṅπ

y0

)2
(C.58)

β2
ṁṅ = k2 − k2

ṁṅ (C.59)

with the only difference between the Dirichlet and the Neumann case, that k2
m0 and

k2
0n do not exist for the Dirichlet eigenvalues. It is however very important to take

into account the lowest order Neumann eigenfunctions, given by (C.56) and (C.57)

(and which do not have a counterpart in the Dirichlet functions), in order to obtain a

complete series expansion of the fields.

C.5.2 Discretization of A
The further mathematical treatment, depending on the choice of the basis functions

bi, is not given in detail here. Schematically, one has to proceed as follows. The

transverse electric field coefficients (C.38) and (C.40) on the front side z = 0 and

analogous formulas for the back side z = z0 are substituted in (C.42) to (C.45), which

in turn are inserted into (C.28) and (C.29) to find the magnetic transverse field co-

efficients in terms of the discretized electric field coefficients on the front and back

side. It is important to express all exponential functions such, that the real part of their

exponent is negative, in order to avoid numerical problems. For the discretized form

of (C.1), the resulting equations are now put into the weighting formulas for the tan-

gential magnetic field (C.48), (C.53), and the analogous formulas for the other sides.

These equations constitute a linear relationship, expressing how each coefficient in the

discretized form of un × h depends on all coefficients of et on the front and the back

side. They can be cast into a matrix form. The submatrices that correspond with the

contribution from either ex or ey on the front or the back can be written as the matrix

product of three matrices. The first matrix represents the projection of the considered

electric field component onto the basis of electric eigenvectors, the second one de-

scribes the map from the electric to the magnetic field, and the last matrix gives the

projection onto the magnetic basis functions.

C.5.3 Discretization of Y
The result as described in C.5.2, is a discretization of the non-differential operator

A, and might cause Gibbs effect problems on the boundaries. The discretization of
(C.2) however, ought to be accurate, as etan and etan,0 are identical on P ’s boundary
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(with the subscript zero to denote the case in which P is filled with the background

medium).

The matrix discretization of (C.2) can be readily calculated from the one of (C.1).

As the projection matrices are the same, the only difference is found in the matrices

that map the electric fields onto the magnetic fields, both cast in their eigenvector rep-

resentation. These matrices for the conductor case and for the ‘background medium’

case need to be subtracted. This should however not be done numerically, for reasons

of accuracy. Instead, the analytical expressions for the elements of these matrices can

be subtracted and the result should be simplified with care. This is important in the

case of a non-magnetic, non-conductingmaterial. One of the main problems here is in

the calculation of β∆
mn

def
= βmn−βmn,0 (with β

2
mn = k2−k2

mn), because in the men-

tioned case of dielectric contrast, k2
mn ≫ k2 and k2

mn ≫ k2
0 and hence βmn ≈ βmn,0.

It should be calculated as

β∆
mn =

k2 − k2
0

βmn + β0
mn

, (C.60)

to obtain a good accuracy. In this case, the factor (1− e−jβ∆

mnz0) which is required as

well, should be calculated by means of

(

1 − e−jβ∆

mnz0

)

= −
ν

∑

p=1

1

p!
(−jβ∆

mnz0)
p (C.61)

in which a low number ν of terms is typically sufficient.
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